996 resultados para Qa-SNARE Proteins


Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJETIVO: Investigar a influência de Proteínas Morfogenéticas Ósseas de origem bovina (bBMPs) ligadas a hidroxiapatita mais colágeno na consolidação de fraturas instáveis do rádio. MÉTODOS: em 15 coelhos com aproximadamente 5,5 meses de idade e peso médio de 3,5kg foi realizada uma fratura transversa na porção média da diáfise do rádio de ambos os membros. Na fratura do rádio direito foi aplicada mistura de bBMPs ligadas à hidroxiapatita (bBMP-HA) e colágeno bovino como aglutinante e na do rádio esquerdo, considerada controle, nenhum tratamento foi usado. Os coelhos (cinco por período) foram submetidos à eutanásia aos 30, 60 e 90 dias após a cirurgia para realização do processamento histológico e análise microscópica. RESULTADOS: A análise histológica descritiva revelou que a consolidação foi similar para os membros tratado e controle. Pela análise histomorfométrica, a área de novo osso foi em média 867442,16 mm², 938743.00 mm² e 779621,06 mm² para os membros controles e 841118,47 mm², 788038,76mm² e 618587,24 mm² para os membros tratados, aos 30, 60 e 90 dias, respectivamente. Desta forma, aos 60 dias de pós-operatório a área de novo osso foi 12.17% maior no membro tratado com bBMP-HA/colágeno em relação ao membro controle (p<0.05, teste de Tukey). em ambos os membros a área de novo osso aumentou durante o período experimental até a total consolidação da fratura. CONCLUSÃO: Baseado nos resultados obtidos foi possível concluir que a mistura de bBMP-HA/colágeno induziu pequena, porém significante melhora na consolidação da fratura.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Cerebrospinal fluid (CSF) is produced in the cerebral ventricles through ultrafiltration of plasma and active transport mechanisms. Evaluation of proteins in CSF may provide important information about the production of immunoglobulins within the central nervous system as well as possible disturbances in the blood-brain barrier. Objective: the objective of this study was to measure the concentration and fractions of protein in CSF samples using a membrane microconcentrator technique followed by electrophoresis, and to compare the protein fractions obtained with those in serum. Methods: CSF samples from 3 healthy dogs and 3 dogs with canine distemper virus infection were concentrated using a membrane microconcentrator having a 0.5 to 30,000 d nominal molecular weight limit (Ultrafree, Millipore, Billerica, MA, USA). Protein concentration was determined before and after concentration. Agarose gel electrophoresis was done on concentrated CSF samples, serum, and serial dilutions of one of the CSF samples. Results: Electrophoretic bands were clearly identified in densitometer tracings in CSF samples with protein concentrations as low as 1.3 g/dL. The higher CSF protein concentration in dogs with distemper was mainly the result of increased albumin concentration. Conclusion: the microconcentrating method used in this study enables characterization of the main protein fractions in CSF by routine electrophoresis and may be useful for interpreting the underlying cause of changes in CSF protein concentrations

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structural specificity of alpha-PMTX, a novel peptide toxin derived from wasp venom has been studied on the neuromuscular synapse in the walking leg of the lobster. alpha-PMTX is known to induce repetitive action potentials in the presynaptic axon due to sodium channel inactivation. We synthesized 29 analogs of alpha-PMTX by substituting one or two amino acids and compared threshold concentrations of these mutant toxins for inducing repetitive action potentials. In 13 amino acid residues of alpha-PMTX, Arg-1, Lys-3 and Lys-12 regulate the toxic activity because substitution of these basic amino acid residues with other amino acid residues greatly changed the potency. Determining the structure-activity relationships of PMTXs will help clarifying the molecular mechanism of sodium channel inactivation. (C) 2000 Elsevier B.V. Ireland Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of 200 mM copper ions on the synthesis of membrane and periplasmic proteins were investigated in iron-grown cells of Acidithiobacillus ferrooxidans (At. ferrooxidans). Total membrane protein profiles of cells grown in the absence of copper ions (unadapted cells) and in the presence of copper ions (copper-adapted cells) were compared by two-dimensional polyacrylamide gel electrophoresis (2D-PAGE). Crude preparations of outer membrane and periplasmic proteins were analyzed by SDS-PAGE. The synthesis of proteins was diminished or increased in the presence of copper ions. Low molecular weight proteins (< 14 kDa) were significantly repressed by copper. These proteins are probably acidic proteins located in the outer membrane. An over-expression of a periplasmic protein of about 17 kDa was detected in the copper-adapted cells and was assumed to be rusticyanin, a 16.5-kDa periplasmic copper protein present in At. ferrooxidans cells and involved in the electron-transport chain of the iron oxidation pathway. To our knowledge, this is the first report of a possible involvement of the rusticyanin and outer membrane proteins in the mechanism of copper resistance in At. ferrooxidans. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Barley plants (cultivars Embrapa 127, 128 and 129) treated with xanthan gum, and with different time intervals between the administration of the inducer and the pathogen, demonstrated induction of resistance against Bipolaris sorokiniana. Induction was shown to have local and systemic action. In order to prove the resistance effect, biochemical analyses were performed to quantify proteins and the enzymatic activity of beta-1,3 glucanase. Results demonstrated that barley plants treated with the inducer, showed an increase in the concentration of proteins, as well as in the activity of the enzyme beta-1,3 glucanase, when compared with the extract from healthy plants. In infected plants, protein concentrations decreased and enzymatic activity was lower than in healthy plants. Results suggest that barley plants treated with xanthan gum developed mechanisms responsible for induced resistance, which are still unknown. The most important macromolecule in the defense mechanism was demonstrated to be PR-protein, due to its accumulation and concentration of proteins. However, it may not be the only macromolecule responsible for the resistance effect. (C) 2004 Elsevier SAS. All rights reserved.