1000 resultados para polypeptide ions


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A recent study indicated that the water-saturated ionic liquid (IL) trihexyl(tetradecyl)phosphonium chloride ([P6,6,6,14][Cl]) provided a viable electrolyte for a Mg-air battery. However, there is limited literature on the properties of IL-water mixtures as battery electrolytes. The physical properties of [P6,6,6,14][Cl] were studied with the addition of both water and metal salts (MgCl2 and LiCl) using conductivity and self-diffusion coefficient measurements. The conductivity of the samples at low water concentrations is surprisingly enhanced by the addition of the metal salt, contrary to lithium IL electrolytes. It was also found that the conductivity of the IL was increased by an order of magnitude by saturation with water. NMR diffusion measurements were used to probe the behaviour of both the cation and the water in the mixtures. It was found that the addition of metal salts to the water-saturated [P6,6,6,14][Cl] did not affect the transport properties of the water or cation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article, we report a facile method for preparing graphene oxide (GO) hybrid materials consisting of copper ions (Cu2+) complexed with GO, where Cu2+ acted as bridges connecting GO sheets. The method of film formation is based on cross-linking GO using Cu2+ followed by filtration onto nanoporous supports. This binding can be rationalized due to the chemical interaction between the functional groups on GO and the metal ion. We observed that there was a decrease in charge transfer resistance through electrochemical study. It suggests that the presence of metal ions in GO films could introduce new energy levels along the electron transport pathway and open up possible conduction channels. We also found that the hybrid graphene film assembled with Cu2+ dramatically decreases resistance through flash light reduction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deposition of islet amyloid polypeptide (IAPP) as amyloid is a pathological hallmark of the islet in type 2 diabetes, which is toxic to β-cells. We previously showed that the enzyme neprilysin reduces islet amyloid deposition and thereby reduces β-cell apoptosis, by inhibiting fibril formation. Two other enzymes, matrix metalloproteinase (MMP)-2 and MMP-9, are extracellular gelatinases capable of degrading another amyloidogenic peptide, Aβ, the constituent of amyloid deposits in Alzheimer disease. We therefore investigated whether MMP-2 and MMP-9 play a role in reducing islet amyloid deposition. MMP-2 and MMP-9 mRNA were present in mouse islets but only MMP-9 activity was detectable. In an islet culture model where human IAPP (hIAPP) transgenic mouse islets develop amyloid but nontransgenic islets do not, a broad spectrum MMP inhibitor (GM6001) and an MMP-2/9 inhibitor increased amyloid formation and the resultant β-cell apoptosis. In contrast, a specific MMP-2 inhibitor had no effect on either amyloid deposition or β-cell apoptosis. Mass spectrometry demonstrated that MMP-9 degraded amyloidogenic hIAPP but not nonamyloidogenic mouse IAPP. Thus, MMP-9 constitutes an endogenous islet protease that limits islet amyloid deposition and its toxic effects via degradation of hIAPP. Because islet MMP-9 mRNA levels are decreased in type 2 diabetic subjects, islet MMP-9 activity may also be decreased in human type 2 diabetes, thereby contributing to increased islet amyloid deposition and β-cell loss. Approaches to increase islet MMP-9 activity could reduce or prevent amyloid deposition and its toxic effects in type 2 diabetes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The reactions of group 14 tetrachlorides MCl4 (M=Si, Ge, Sn) with oleum (65 % SO3) at elevated temperatures lead to the unique complex ions [M(S2O7)3]2−, which show the central M atoms in coordination with three chelating S2O72− groups. The mean distances M[BOND]O within the anions increase from 175.6(2)–177.5(2) pm (M=Si) to 186.4(4)–187.7(4) pm (M=Ge) to 201.9(2)–203.5(2) pm (M=Sn). These distances are reproduced well by DFT calculations. The same calculations show an increasing positive charge for the central M atom in the row Si, Ge, Sn, which can be interpreted as the decreasing covalency of the M[BOND]O bonds. For the silicon compound (NH4)2[Si(S2O7)3], 29Si solid-state NMR measurements have been performed, with the results showing a signal at −215.5 ppm for (NH4)2[Si(S2O7)3], which is in very good agreement with theoretical estimations. In addition, the vibrational modes within the [MO6] skeleton have been monitored by Raman spectroscopy for selected examples, and are well reproduced by theory. The charge balance for the [M(S2O7)3]2− ions is achieved by monovalent A+ counter ions (A=NH4, Ag), which are implemented in the syntheses in the form of their sulfates. The sizes of the A+ ions, that is, their coordination requirements, cause the crystallographic differences in the crystal structures, although the complex [M(S2O7)3]2− ions remain essentially unaffected with the different A+ ions. Furthermore, the nature of the A+ ions influences the thermal behavior of the compounds, which has been monitored for selected examples by thermogravimetric differential thermal analysis (DTA/TG) and XRD measurements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel protein with anti-tumor activities named malanin was isolated and purified from an endemic plant in Yunnan and Guangxi provinces. Effects of copper ion, silver ion and calcium ion on malanin and apo-malanin fluorescence spectra were studied. The results showed that copper ion leads to obvious statistic quenching of malanin and apo-malanin fluorescence. The dissociation constant of them from malanin and apo-malanin were about 2.37×10-4 and 2.66×10-4 mol·L-1, respectively. The silver ion did not have quenching action on malanin fluorescence, but it had statistic quenching effect on apo-malanin fluorescence, and its dissociation constant was 2.37×10-4 mol·L-1. Calcium ion did not have quenching action on malanin and apo-malanin fluorescence. It plays an important role in keeping malanin natural conformation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The application of organic ionic plastic crystals (OIPCs) as a new class of solid electrolyte for energy storage devices such as lithium batteries and, more recently, sodium batteries is attracting increasing attention. Key to this is achieving sufficient target ion transport through the material. This requires fundamental understanding of the structure and dynamics of OIPCs that have been doped with the necessary lithium or sodium salts. Here we report, for the first time, the atomic level structure and transport of both lithium and sodium ions in the plastic crystalline phases of an OIPC diethyl(methyl)(isobutyl)phosphonium hexafluorophosphate. These molecular dynamics simulations reveal two types of coordination geometries of the alkali metal ion first solvation shells, which cooperate closely with the metal ion hopping motion. The significantly different ion migration rates between two metal ion doped systems could also be related to the differences in solvation structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a new method for ultrasensitive detection of Cu(2+), which is based on changes in the tunnelling recognition current across self-assembled core-satellite gold nanoparticles (GNPs) networks functionalised with amino acids (l-cysteine). The addition of copper ions induces the formation of GNP/l-cysteine/Cu(2+)/l-cysteine/GNP molecular junctions and generates a significant decrease in the resistance through the networks. The networks are ultrasensitive to over ten orders range of copper ion concentrations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

All rights reserved. A graphene nanodots-encaged porous gold electrode via ion beam sputtering deposition (IBSD) for electrochemical sensing is presented. The electrodes were fabricated using Au target, and a composite target of Al and graphene, which were simultaneously sputtered onto glass substrates by Ar ion beam, followed with hydrochloric acid corrosion. The as-prepared graphene nanodots-encaged porous gold electrodes were then used for the analysis of heavy metal ions, e.g. Cu2+ and Pb2+ by Osteryoung square wave voltammetry (OSWV). These porous electrodes exhibited enhanced detection range for the heavy metal ions due to the entrapped graphene nanodots in 3-D porous structure. In addition, it was also found that when the thickness of porous electrode reached 40 nm the detection sensitivity came into saturation. The linear detection range is 0.009-4 μM for Cu2+ and 0.006-2.5 μM for Pb2+. Good reusability and repeatability were also observed. The formation mechanism and 3-D structure of the porous electrode were also investigated using scanning electron microscope (SEM), transmission electron microscope (TEM) and X-ray photoelectron spectra (XPS). This graphene entrapped 3-D porous structure may envision promising applications in sensing devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Novel cisplatin (CDDP)-loaded, polypeptide-based vesicles for the targeted delivery of cisplatin to cancer cells have been prepared. These vesicles were formed from biocompatible and biodegradable maleimide-poly(ethylene oxide)114-b-poly(L-glutamic acid)12 (Mal-PEG114-b-PLG12) block copolymers upon conjugation with the drug itself. CDDP conjugation forms a short, rigid, cross-linked, drug-loaded, hydrophobic block in the copolymer, and subsequently induces self-assembly into hollow vesicle structures with average hydrodynamic diameters (Dh) of ∼ 270 nm. CDDP conjugation is critical to the formation of the vesicles. The reactive maleimide-PEG moieties that form the corona and inner layer of the vesicles were protected via formation of a reversible Diels-Alder (DA) adduct throughout the block copolymer synthesis so as to maintain their integrity. Drug release studies demonstrated a low and sustained drug release profile in systemic conditions (pH = 7.4, [Cl(-)] = 140 mM) with a higher "burst-like" release rate being observed under late endosomal/lysosomal conditions (pH = 5.2, [Cl(-)] = 35 mM). Further, the peripheral maleimide functionalities on the vesicle corona were conjugated to thiol-functionalized folic acid (FA) (via in situ reduction of a novel bis-FA disulfide, FA-SS-FA) to form an active targeting drug delivery system. These targeting vesicles exhibited significantly higher cellular binding/uptake into and dose-dependent cytotoxicity toward cancer cells (HeLa) compared to noncancerous cells (NIH-3T3), which show high and low folic acid receptor (FR) expression, respectively. This work thus demonstrates a novel approach to polypeptide-based vesicle assembly and a promising strategy for targeted, effective CDDP anticancer drug delivery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effect of calcium and magnesium ions was studied in detail in batch mode in shake flask cultures of two fast growing strains of thraustochytrids (Aurantiochytrium sp. DBTIOC-18 and Schizochytrium sp. DBTIOC-1) for biomass and lipid production. These strains were previously isolated from Indian marine biodiversity. Screening of these two strains on different carbon and nitrogen sources revealed the suitability of glycerol over glucose and sodium nitrate over yeast extract for the cultivation of these strains. The presence of higher concentration of glycerol in the medium inhibited the glycerol utilization by the cell thus resulting in lower biomass and lipid production in both the strains. Supplementing media with calcium and magnesium ions promoted glycerol utilization thus resulted in a substantial rise in volumetric production of biomass (55.12 g L-1, 48.12 g L-1), fatty acid for biodiesel (27.14 g L-1, 22.15 g L-1) and docosahexaenoic acid (14.57 g L-1, 10.12 g L-1) with both strains Aurantiochytrium sp. DBTIOC-18 and Schizochytrium sp. DBTIOC-1, respectively. Growth profile study of these two strains showed further improvement in production of biomass, fatty acid for biodiesel and docosahexaenoic acid when cultures were extended up to 7 days. Finding of this work underlines the importance of calcium and magnesium salts in designing new fermentation strategies to prevent substrate inhibition and achieve high cell density culture under high nutrient concentration especially carbon sources.