999 resultados para methyl chloride


Relevância:

20.00% 20.00%

Publicador:

Resumo:

As the focus on developing new polymer electrolytes continues to intensify in the area of alternative energy conversion and storage devices, the rational design of polyelectrolytes with high single ion transport rates has emerged as a primary strategy for enhancing device performance. Previously, we reported a series of sulfonate based copolymer ionomers based on using mixed bulky quaternary ammonium cations and sodium cations as the ionomer counterions. This led to improvements in the ionic conductivity and an apparent decoupling from the Tg of the ionomer. In this article, we have prepared a new series of ionomers based on the homopolymer of poly(2-acrylamido-2-methyl-1-propane-sulfonic acid) using differing sizes of the ammonium counter-cations. We observe a decreasing Tg with increasing the bulkiness of the quaternary ammonium cation, and an increasing degree of decoupling from Tg within these systems. Somewhat surprisingly, phase separation is observed in this homopolymer system, as evidenced from multiple impedance arcs, Raman mapping and SEM. The thermal properties, morphology and the effect of plasticizer on the transport properties in these ionomers are also presented. The addition of 10 wt% plasticizer increased the ionic conductivity between two and three orders of magnitudes leading to materials that may have applications in sodium based devices. This journal is

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of rare earth 4-hydroxycinnamate compounds including Ce(4OHCin)3, La(4OHCin)3, and Pr(4OHCin)3 has been synthesized and evaluated as novel inhibitors for carbon dioxide corrosion of steel in CO2-saturated sodium chloride solutions. Electrochemical measurements and surface analysis have shown that these REM(4OHCin)3 compounds effectively inhibited CO2 corrosion by forming protective inhibiting deposits that shut down the active electrochemical corrosion sites on the steel surface. Inhibition efficiency was found to increase in the order Ce(4OHCin)3 < La(4OHCin)3 < Pr(4OHCin)3 and with increase in inhibitor concentration up to 0.63 mM. Detailed insights into corrosion inhibition mechanism of these compounds in carbon dioxide environment are also provided.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As reported previously, water saturated trihexyl(tetradecyl)phosphonium chloride ([P6,6,6,14][Cl]) ionic liquid (IL) is a promising electrolyte for magnesium-air batteries. The added water plays an important role in enabling high rate and high efficiency Mg dissolution while stabilizing the Mg interphase. In this work, the role of the water was investigated by replacement with other additives such as toluene and tetrahydrofuran to specifically target the assumed roles of water, namely: (i) enhancement of transport properties; (ii) complexation and stabilization of the Mg anode; (iii) provision of active protons for the cathodic reaction. Discharge tests show that ethylene glycol supports comparable performance to that provided by water. Examination of the viscosity and conductivity of different [P6,6,6,14][Cl]/additive mixtures indicates that a simple consideration of solution characteristics cannot explain the observed trends. Rather, other factors, such as the presence of active protons and/or oxygen-donor groups, are also key features for the development of IL electrolytes for practical magnesium-air cells. Finally, the presence of ethylene glycol in the electrolyte results in a complex gel on the Mg interface, similar to that found in the presence of water. This may also play a role in enabling stable discharge of the Mg anode. © 2014 The Electrochemical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Natural and synthetic triterpenoids have been shown to kill cancer cells via multiple mechanisms. The therapeutic effect and underlying mechanism of the synthetic triterpenoid bardoxolone methyl (C-28 methyl ester of 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid; CDDO-Me) on esophageal cancer are unclear. Herein, we aimed to investigate the anticancer effects and underlying mechanisms of CDDO-Me in human esophageal squamous cell carcinoma (ESCC) cells. Our study showed that CDDO-Me suppressed the proliferation and arrested cells in G2/M phase, and induced apoptosis in human ESCC Ec109 and KYSE70 cells. The G2/M arrest was accompanied with upregulated p21Waf1/Cip1 and p53 expression. CDDO-Me significantly decreased B-cell lymphoma-extra large (Bcl-xl), B-cell lymphoma 2 (Bcl-2), cleaved caspase-9, and cleaved poly ADP ribose polymerase (PARP) levels but increased the expression level of Bcl-2-associated X (Bax). Furthermore, CDDO-Me induced autophagy in both Ec109 and KYSE70 cells via suppression of the phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) signaling pathway. There were interactions between the autophagic and apoptotic pathways in Ec109 and KYSE70 cells subject to CDDO-Me treatment. CDDO-Me also scavenged reactive oxygen species through activation of the nuclear factor (erythroid-derived 2)-related factor 2 (Nrf2) pathway in Ec109 and KYSE70 cells. CDDO-Me inhibited cell invasion, epithelial-mesenchymal transition, and stemness in Ec109 and KYSE70 cells. CDDO-Me significantly downregulated E-cadherin but upregulated Snail, Slug, and zinc finger E-box-binding homeobox 1 (TCF-8/ZEB1) in Ec109 and KYSE70 cells. CDDO-Me significantly decreased the expression of octamer-4, sex determining region Y-box 2 (Sox-2), Nanog, and B lymphoma Mo-MLV insertion region 1 homolog (Bmi-1), all markers of cancer cell stemness, in Ec109 and KYSE70 cells. Taken together, these results indicate that CDDO-Me is a promising anticancer agent against ESCC. Further studies are warranted to explore the molecular targets, efficacy and safety of CDDO-Me in the treatment of ESCC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Synthesis and complete characterization of some ester functionalized vinylic tellurides bearing an aryl ligand with varying steric and electronic effects bound to tellurium is described. Hydrotelluration of methyl propiolate using Ar2Te2/NaBH4 in methanol results in a mixture of stereoisomers of methyl β-(aryltelluro)acrylates, ArTeCH[double bond, length as m-dash]CHCOOMe (Ar = 4-MeOC6H4, 1A; 1-C10H7, 2A; 2,4,6-Me3C6H2, 3A; C5H5FeC5H4, 4A; 4-Me2NC6H4, 5A; and 2-C4H3S, 6A). The same reaction in ethanol provides isomeric mixtures of the ethyl esters ArTeCH[double bond, length as m-dash]CHCOOEt (1B–6B). However, in the reactions between methyl propiolate and Ar2Te2 (Ar = 2,4,6-Me3C6H2, 4-Me2NC6H4) in isopropanol or t-butanol, no exchange of alkyl groups between the parent ester and the solvent is observed, instead detelluration of the Ar2Te2 to Ar2Te is a competing reaction along with almost exclusive formation of the (Z)-isomers (3Aa, 5Aa). The geometry of the separated stereoisomers is established in solution, with the help of 1H, 13C and 125Te NMR spectrometry. Of particular interest is the observation that 125Te chemical shifts {deshielded in (Z) compared to (E); Δδ = 106–136 ppm} and the geminal heteronuclear coupling constants {2J(1H–125Te) values for (E) are more than seven times that of the corresponding (Z) isomer} can be used to distinguish between liquid isomers. Structural characterization in the solid state by single-crystal X-ray diffraction for the 2Ba, 3Aa, 3Ba, 5Aa, 8 (Z)-isomers as well as for both stereoisomers of 4-Me2NC6H4TeCH[double bond, length as m-dash]CHCOOEt (5Ba and 5Bb) is also presented. The carbonyl O atom of the ester group is invariably involved, at least in the solid state, in a secondary bonding interaction with the Te(II) atom. While an intermolecular Te⋯O interaction gives rise to one-dimensional supramolecular arrays in the crystal lattice of 5Bb with (E) configuration, it is realized intramolecularly in the case of the (Z)-isomers due to the cis position of the chalcogen atoms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abnormalities in glutamatergic signalling are proposed in schizophrenia in light of the schizophreniform psychosis elicited by NMDA antagonists. The metabotropic glutamate receptor 5 (mGluR5) interacts closely with the NMDA receptor and is implicated in several behavioural endophenotypes of schizophrenia. We have demonstrated that mice lacking mGluR5 have increased sensitivity to the hyperlocomotive effects of the NMDA antagonist MK-801. Mice lacking mGluR5 also show abnormal locomotor patterns, reduced prepulse inhibition (PPI), and deficits on performance of a short-term spatial memory task on the Y-maze. Chronic administration of the antipsychotic drug clozapine ameliorated the locomotor disruption and reversed the PPI deficit, but did not improve Y-maze performance. Chronic clozapine increased NMDA receptor binding ([3H]MK-801) but did not alter dopamine D2 ([3H]YM-09151), 5-HT2A ([3H]ketanserin), or muscarinic M1/M4 receptor ([3H]pirenzepine), binding in these mice. These results demonstrate behavioural abnormalities that are relevant to schizophrenia in the mGluR5 knockout mouse and a reversal of behaviours with clozapine treatment. These results highlight both the interactions between mGluR5 and NMDA receptors in the determination of schizophreniform behaviours and the potential for the effects of clozapine to be mediated by NMDA receptor regulation.
Key words

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on the thermal, structural and conductivity properties of the organic ionic plastic crystal (OIPC) N-methyl-N-methyl-pyrrolidinium dicyanamide [C1mpyr][N(CN)2] mixed with the sodium salt Na[N(CN)2]. The DSC thermal traces indicate that an isothermal transition, which may be a eutectic melting, occurs at ~ 89 °C, below which all compositions are entirely in the solid phase. At 20 mol% Na[N(CN)2], this transition is the final melt for this mixture, and a new liquidus peak grows beyond 20 mol% Na[N(CN)2]. The III- > II solid-solid phase transition continues to be evident at ~- 2 °C. The microstructure for all the mixtures indicated a phase separated morphology where precipitates can be clearly observed. Most likely, these precipitates consist of a Na-rich second phase. This was also suggested from the vibrational spectroscopy and the 23Na NMR spectra. The lower concentrations of Na[N(CN)2] present complex 23Na MAS spectra, suggesting more than one sodium ion environment is present in these mixtures consistent with complex phase behavior. Unlike other OIPCs where the ionic conductivity usually increases upon doping or mixing in a second component, the conductivity of these mixtures remains relatively constant and above 10- 4 S cm- 1 at ∼ 80 °C, even in the solid state. Such high conductivities suggest these materials may be promising to be used for all solid-state electrochemical devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract
Chloride ingress into concrete has long been known to decrease the service life of built infrastructure. Inadequate knowledge of the physical reasons associated with chloride diffusion into concrete could generate chloride penetration profiles that become meaningless for prediction of service life. In this study, the effects of pore closure (physical effect) and changes in chloride binding (chemical effect) on chloride diffusion through Australian General Purpose (GP) cement pastes were investigated. Through - diffusion tests and “in - and - out” diffusion tests were conducted to monitor the time - dependent chloride diffusion through cement pastes cured from 1 to 28 days. The through - diffusion test quantified the overall chloride diffusion behaviour at different stages of cement hydration, which was a combined result of physical and chemical processes controlling diffusion. The “in - and - out” test differentiated the contributions of the physical and chemical processes on the chloride diffusion at different stages of cement hydration. As expected, the reduction of chloride diffusivity was significant during the first two weeks of curing, most likely attributed to the significant reduction of porosity as well as establishment of capillary discontinuities within the pore structure. It was also observed that the amount of bound chloride was not constant but increased significantly from 1 to 28 days of curing age.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Corrosion has significant adverse effects on the durability of reinforced concrete (RC) structures, especially those exposed to a marine environment and subjected to mechanical stress, such as bridges, jetties, piers and wharfs. Previous studies have been carried out to investigate the corrosion behaviour of steel rebar in various concrete structures, however, few studies have focused on the corrosion monitoring of RC structures that are subjected to both mechanical stress and environmental effects. This paper presents an exploratory study on the development of corrosion monitoring and detection techniques for RC structures under the combined effects of external loadings and corrosive media. Four RC beams were tested in 3% NaCl solutions under different levels of point loads. Corrosion processes occurring on steel bars under different loads and under alternative wetting - drying cycle conditions were monitored. Electrochemical and microscopic methods were utilised to measure corrosion potentials of steel bars; to monitor galvanic currents flowing between different steel bars in each beam; and to observe corrosion patterns, respectively. The results indicated that steel corrosion in RC beams was affected by local stress. The point load caused the increase of galvanic currents, corrosion rates and corrosion areas. Pitting corrosion was found to be the main form of corrosion on the surface of the steel bars for most of the beams, probably due to the local concentration of chloride ions. In addition, visual observation of the samples confirmed that the localities of corrosion were related to the locations of steel bars in beams. It was also demonstrated that electrochemical devices are useful for the detection of RC beam corrosion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Non-invasive diagnostic strategies aimed at identifying biomarkers of cancer are of great interest for early cancer detection. Urine is potentially a rich source of volatile organic metabolites (VOMs) that can be used as potential cancer biomarkers. Our aim was to develop a generally reliable, rapid, sensitive, and robust analytical method for screening large numbers of urine samples, resulting in a broad spectrum of native VOMs, as a tool to evaluate the potential of these metabolites in the early diagnosis of cancer. METHODS: To investigate urinary volatile metabolites as potential cancer biomarkers, urine samples from 33 cancer patients (oncological group: 14 leukaemia, 12 colorectal and 7 lymphoma) and 21 healthy (control group, cancer-free) individuals were qualitatively and quantitatively analysed. Dynamic solid-phase microextraction in headspace mode (dHS-SPME) using a carboxenpolydimethylsiloxane (CAR/PDMS) sorbent in combination with GC-qMS-based metabolomics was applied to isolate and identify the volatile metabolites. This method provides a potential non-invasive method for early cancer diagnosis as a first approach. To fulfil this objective, three important dHS-SPME experimental parameters that influence extraction efficiency (fibre coating, extraction time and temperature of sampling) were optimised using a univariate optimisation design. The highest extraction efficiency was obtained when sampling was performed at 501C for 60min using samples with high ionic strengths (17% sodium chloride, wv 1) and under agitation. RESULTS: A total of 82 volatile metabolites belonging to distinct chemical classes were identified in the control and oncological groups. Benzene derivatives, terpenoids and phenols were the most common classes for the oncological group, whereas ketones and sulphur compounds were the main classes that were isolated from the urine headspace of healthy subjects. The results demonstrate that compound concentrations were dramatically different between cancer patients and healthy volunteers. The positive rates of 16 patients among the 82 identified were found to be statistically different (Po0.05). A significant increase in the peak area of 2-methyl3-phenyl-2-propenal, p-cymene, anisole, 4-methyl-phenol and 1,2-dihydro-1,1,6-trimethyl-naphthalene in cancer patients was observed. On average, statistically significant lower abundances of dimethyl disulphide were found in cancer patients. CONCLUSIONS: Gas chromatographic peak areas were submitted to multivariate analysis (principal component analysis and supervised linear discriminant analysis) to visualise clusters within cases and to detect the volatile metabolites that are able to differentiate cancer patients from healthy individuals. Very good discrimination within cancer groups and between cancer and control groups was achieved.