992 resultados para Sourdough bread--Microbiology


Relevância:

10.00% 10.00%

Publicador:

Resumo:

DNA polymerase has been purified approximately 2000-fold from Mycobacterium tuberculosis H37Rv. The purified preparation was homogeneous by electrophoretic criteria and has a molecular weight of 135 000. The purified enzyme resembles Escherichia coli polymerase I in its properties, being insensitive to sulfhydryl drugs and possessing 5′,3′-exonuclease activity in addition to polymerase and 3′,5′-exonuclease activities. However, it differs from the latter in its sensitivity to higher salt concentration and DNA intercalating agents such as 8-aminoquinoline. The polymerase exhibited maximal activity between 37–42°C and pH 8.8–9.5. The polymerase was stable for several months below 0°C. However, the 5′,3′-exonuclease activity was more labile. The effects of different metal ions, polyamines and drugs on the polymerase activity are presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

2-Phenethyl alcohol (2-PEA) and 2-phenyllactic acid (2-PLA) were isolated from the culture filtrates of Candida species grown in media containing peptone or phenylalanine as nitrogen source. These compounds were characterized by comparing their UV, IR, and NMR spectral properties with authentic samples. Candida species differed markedly in their production of 2-PEA and 2-PLA. Experiments using [14C]-phenylalanine indicated that both 2-PEA and 2-PLA are synthesised from L-phenylalanine. A pathway for the biosynthesis of 2-PEA from L-phenylalanine has been proposed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A model is suggested for mammalian male determination based on interactions postulated to occur among an autosomal repressor gene, an X-linked male-determining gene termed Tdx, and multiple copies of certain DNA sequences on the Y chromosome that do not code for any protein. The repressor, synthesised in limited amounts, has higher affinity for the Y-linked sequences than for Tdx and its affinity for Tdx is greater than that of RNA polymerase. In XY cells the Y effectively binds all available repressor, permitting transcription of Tdx to occur. In XX cells, since competition from the Y-linked high-affinity sequences is absent, the repressor binds to Tdx and prevents transcription. As a result of this competition between Tdx and the Y-linked high-affinity sites for limiting concentrations of the autosomal repressor, the product of the Tdx gene (TDX) is synthesized in the male but not in the female. It is suggested that in determination of the male sex, the role of the Y chromosome is to serve as a sink for the Tdx repressor. The proposed interactions provide a plausible explanation for the genetic properties of several anomalies of sexual development in mouse, man, and other mammals. The model suggests that the postulated multiple, highaffinity sequences on the Y chromosome of the mouse are included among the DNA sequences referred to as the Sxr-Bkm sequences.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chlamydia trachomatis is the most common bacterial sexually transmitted pathogen worldwide. Infection can result in serious reproductive pathologies, including pelvic inflammatory disease, ectopic pregnancy, and infertility, in women. However, the processes that result in these reproductive pathologies have not been well defined. Here we review the evidence for the human disease burden of these chlamydial reproductive pathologies. We then review human-based evidence that links Chlamydia with reproductive pathologies in women. We present data supporting the idea that host, immunological, epidemiological, and pathogen factors may all contribute to the development of infertility. Specifically, we review the existing evidence that host and pathogen genotypes, host hormone status, age of sexual debut, sexual behavior, coinfections, and repeat infections are all likely to be contributory factors in development of infertility. Pathogen factors such as infectious burden, treatment failure, and tissue tropisms or ascension capacity are also potential contributory factors. We present four possible processes of pathology development and how these processes are supported by the published data. We highlight the limitations of the evidence and propose future studies that could improve our understanding of how chlamydial infertility in women occurs and possible future interventions to reduce this disease burden.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract a Micrococcus sp. isolated by isophthalate enrichment, utilized 8 of the 13 substituted benzoic acids tested as the sole source of carbon and energy. The organism degraded benzoic acid and anthranilic acid through the intermediate formation of catechol. While salicylate is metabolized through genetisic acid, p-hydroxybenzoic acid is degraded through protocatechuic acid. The organism grew well on isophthalate but failed to utilize phthalate and terphthalate. Catechol disoxygenase, gentisate dioxygenase and protocatechuate dioxygenase activities were shown in the cell-free extracts. Catechol and protocatechuate are further metabolized through an ortho-cleavage pathway.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A fungus capable of degrading DL-phenylalanine was isolated from the soil and identified as Aspergillus niger. It was found to metabolize DL-phenylalanine by a new pathway involving 4-hydroxymandelic acid. D-Amino acid oxidase and L-phenylalanine: 2-oxoglutaric acid aminotransferase initiated the degradation of D- and L-phenylalanine, respectively. Both phenylpyruvate oxidase and phenylpyruvate decarboxylase activities could be demonstrated in the cell-free system. Phenylacetate hydroxylase, which required reduced nicotinamide adenine dinucleotide phosphate, converted phenylacetic acid to 2- and 4-hydroxyphenylacetic acid. Although 4-hydroxyphenylacetate was converted to 4-hydroxymandelate, 2-hydroxyphenylacetate was not utilized until the onset of sporulation. During sporulation, it was converted rapidly into homogentisate and oxidized to ring-cleaved products. 4-Hydroxymandelate was degraded to protocatechuate via

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Temporal separaton of transcription and translation during nitrate reductase induction oin Candida utilis was achieved by the use of actinomycin D and cycloheximide. The yeast failed to synthesize nitrate reductase when nitrate was not provided during transcription. Nitrate thus appeared to induce during transcription the capacity to synthesize nitrate reductase. Presence of nitrate, on the other hand, was not obligatory during translation except for its essential role in maintaining the stability of nitrate reductase after its formation as well as its mRNA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Peroxidase from Mycobacterium tuberculosis H37Rv was purified to homogeneity. The homogeneous protein exhibits catalase and Y (Youatt's)-enzyme activities in addition to peroxidase activity. Further confirmation that the three activities are due to a single enzyme was accomplished by other criteria, such as differential thermal inactivation, sensitivity to different inhibitors, and co-purification. The Y enzyme (peroxidase) was separated from NADase (NAD+ glycohydrolase) inhibitor by gel filtration on Sephadex G-200. The molecular weights of peroxidase and NADase inhibitor, as determined by gel filtration, are 240000 and 98000 respectively. The Y enzyme shows two Km values for both isoniazid (isonicotinic acid hydrazide) and NAD at low and high concentrations. Analysis of the data by Hill plots revealed that the enzyme has one binding site at lower substrate concentrations and more than one at higher substrate concentration. The enzyme contains 6g-atoms of iron/mol. Highly purified preparations of peroxidases from different sources catalyse the Y-enzyme reaction, suggesting that the nature of the reaction may be a peroxidatic oxidation of isoniazid. Moreover, the Y-enzyme reaction is enhanced by O2. Isoniazid-resistant mutants do not exhibit Y-enzyme, peroxidase or catalase activities, and do not take up isoniazid. The Y-enzyme reaction is therefore implicated in the uptake of the drug.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microorganisms capable of degrading dl-synephrine were isolated from soil of Citrus gardens by enrichment culture, with dl-synephrine as the sole source of carbon and nitrogen. An organism which appears to be an arthrobacter, but which cannot be identified with any of the presently recognized species was predominant in these isolates. It was found to metabolize synephrine by a pathway involving p-hydroxyphenylacetaldehyde, p-hydroxyphenylacetic acid, and 3,4-dihydroxyphenylacetic acid as intermediates. Some of the enzymes of this pathway were demonstrated in cell-free extracts. An aromatic oxygenase, which could also be readily obtained in a cell-free system, was found to degrade 3,4-dihydroxyphenylacetic acid by meta cleavage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Forty-one cultures degrading and assimilating oxalate were isolated from chicken dung. Characterization indicated six different types. One of these belonged to the genusAlcaligenes hitherto never reported to degrade oxalate. Three groups ofPseudomonas strains differed physiologically from strains already known.