980 resultados para Entomopathogenic nematode


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The structural proteins of the cytoplasmic intermediate filaments (IFs) arise in the nematode Caenorhabditis elegans from eight reported genes and an additional three genes now identified in the complete genome. With the use of double-stranded RNA interference (RNAi) for all 11 C. elegans genes encoding cytoplasmic IF proteins, we observe phenotypes for the five genes A1, A2, A3, B1, and C2. These range from embryonic lethality (B1) and embryonic/larval lethality (A3) to larval lethality (A1 and A2) and a mild dumpy phenotype of adults (C2). Phenotypes A2 and A3 involve displaced body muscles and paralysis. They probably arise by reduction of hypodermal IFs that participate in the transmission of force from the muscle cells to the cuticle. The B1 phenotype has multiple morphogenetic defects, and the A1 phenotype is arrested at the L1 stage. Thus, at least four IF genes are essential for C. elegans development. Their RNAi phenotypes are lethal defects due to silencing of single IF genes. In contrast to C. elegans, no IF genes have been identified in the complete Drosophila genome, posing the question of how Drosophila can compensate for the lack of these proteins, which are essential in mammals and C. elegans. We speculate that the lack of IF proteins in Drosophila can be viewed as cytoskeletal alteration in which, for instance, stable microtubules, often arranged as bundles, substitute for cytoplasmic IFs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Development of the nematode egg-laying system requires the formation of a connection between the uterine lumen and the developing vulval lumen, thus allowing a passage for eggs and sperm. This relatively simple process serves as a model for certain aspects of organogenesis. Such a connection demands that cells in both tissues become specialized to participate in the connection, and that the specialized cells are brought in register. A single cell, the anchor cell, acts to induce and to organize specialization of the epidermal and uterine epithelia, and registrates these tissues. The inductions act via evolutionarily conserved intercellular signaling pathways. The anchor cell induces the vulva from ventral epithelial cells via the LIN-3 growth factor and LET-23 transmembrane tyrosine kinase. It then induces surrounding uterine intermediate precursors via the receptor LIN-12, a founding member of the Notch family of receptors. Both signaling pathways are used multiple times during development of Caenorhabditis elegans. The outcome of the signaling is context-dependent. Both inductions are reciprocated. After the anchor cell has induced the vulva, it stretches toward the induced vulval cells. After the anchor cell has induced specialized uterine intermediate precursor cells, it fuses with a subset of their progeny.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mosquito (Aedes aegypti) vitellogenin receptor (AaVgR) is a large membrane-bound protein (214 kDa when linearized) that mediates internalization of vitellogenin, the major yolk-protein precursor, by oocytes during egg development. We have cloned and sequenced two cDNA fragments encompassing the entire coding region of AaVgR mRNA, to our knowledge the first insect VgR sequence to be reported. The 7.3-kb AaVgR mRNA is present only in female germ-line cells and is abundant in previtellogenic oocytes, suggesting that the AaVgR gene is expressed early in oocyte differentiation. The deduced amino acid sequence predicts a 202.7-kDa protein before posttranslational processing. The AaVgR is a member of the low density lipoprotein receptor superfamily, sharing significant homology with the chicken (Gallus gallus) VgR and particularly the Drosophila melanogaster yolk protein receptor, in spite of a very different ligand for the latter. Distance-based phylogenetic analyses suggest that the insect VgR/yolk protein receptor lineage and the vertebrate VgR/low density lipoprotein receptor lineage diverged before the bifurcation of nematode and deuterostome lines.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Telomeres are specialized structures located at the ends of linear eukaryotic chromosomes that ensure their complete replication and protect them from fusion and degradation. We report here the characterization of the telomeres of the nematode Caenorhabditis elegans. We show that the chromosomes terminate in 4-9 kb of tandem repeats of the sequence TTAGGC. Furthermore, we have isolated clones corresponding to 11 of the 12 C. elegans telomeres. Their subtelomeric sequences are all different from each other, demonstrating that the terminal TTAGGC repeats are sufficient for general chromosomal capping functions. Finally, we demonstrate that the me8 meiotic mutant, which is defective in X chromosome crossing over and segregation, bears a terminal deficiency, that was healed by the addition of telomeric repeats, presumably by the activity of a telomerase enzyme. The 11 cloned telomeres represent an important advance for the completion of the physical map and for the determination of the entire sequence of the C. elegans genome.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The c-myc oncogene has been shown to play a role in cell proliferation and apoptosis. The realization that myc oncogenes may control the level of expression of other genes has opened the field to search for genetic targets for Myc regulation. Recently, using a subtraction/coexpression strategy, a murine genetic target for Myc regulation, called EC439, was isolated. To further characterize the ECA39 gene, we set out to determine the evolutionary conservation of its regulatory and coding sequences. We describe the human, nematode, and budding yeast homologs of the mouse ECA39 gene. Identities between the mouse ECA39 protein and the human, nematode, or yeast proteins are 79%, 52%, and 49%, respectively. Interestingly, the recognition site for Myc binding, located 3' to the start site of transcription in the mouse gene, is also conserved in the human homolog. This regulatory element is missing in the ECA39 homologs from nematode or yeast, which also lack the regulator c-myc. To understand the function of ECA39, we deleted the gene from the yeast genome. Disruption of ECA39 which is a recessive mutation that leads to a marked alteration in the cell cycle. Mutant haploids and homozygous diploids have a faster growth rate than isogenic wild-type strains. Fluorescence-activated cell sorter analyses indicate that the mutation shortens the G1 stage in the cell cycle. Moreover, mutant strains show higher rates of UV-induced mutations. The results suggest that the product of ECA39 is involved in the regulation of G1 to S transition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mycoinsecticides are being used for the control of many insect pests as an environmentally acceptable alternative to chemical insecticides. A key aim of much recent work has been to increase the speed of kill and so improve commercial efficacy of these biocontrol agents. This might he achieved by adding insecticidal genes to the fungus, an approach considered to have enormous potential for the improvement of biological pesticides. We report here the development of a genetically improved entomopathogenic fungus. Additional copies of the gene encoding a regulated cuticle-degrading protease (Pr1) from Metarhizium anisopliae were inserted into the genome of M. anisopliae such that Pr1 was constitutively overproduced in the hemolymph of Manduca sexta, activating the prophenoloxidase system. The combined toxic effects of Pr1 and the reaction products of phenoloxidase caused larvae challenged with the engineered fungus to exhibit a 25% reduction in time of death and reduced food consumption by 40% compared to infections by the wild-type fungus. In addition, infected insects were rapidly melanized, and the resulting cadavers were poor substrates for fungal sporulation. Thus, environmental persistence of the genetically engineered fungus is reduced, thereby providing biological containment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

At least 13 genes (mec-1, mec-2, mec-4-10, mec-12, mec-14, mec-15, and mec-18) are needed for the response to gentle touch by 6 touch receptor neurons in the nematode Caenorhabditis elegans. Several, otherwise recessive alleles of some of these genes act as dominant enhancer mutations of temperature-sensitive alleles of mec-4, mec-5, mec-6, mec-12, and mec-15. Screens for additional dominant enhancers of mec-4 and mec-5 yielded mutations in previously known genes. In addition, some mec-7 alleles showed allele-specific, dominant suppression of the mec-15 touch-insensitive (Mec) phenotype. The dominant enhancement and suppression exhibited by these mutations suggest that the products of several touch genes interact. These results are consistent with a model, supported by the known sequences of these genes, that almost all of the touch function genes contribute to the mechanosensory apparatus.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have found a predator-prey association between the social amoeba Dictyostelium discoideum and the free soil living nematode Caenorhabditis elegans. C. elegans feeds on the amoebae and multiplies indefinitely when amoebae are the sole food source. In an environment created from soil, D. discoideum grows and develops, but not in the presence of C. elegans. During development, C. elegans feeds on amoebae until they aggregate and synthesize an extracellular matrix called the slime sheath. After the sheath forms, the aggregate and slug are protected. Adult nematodes ingest Dictyostelium spores, which pass through the gut of the worm without loss of structure and remain viable. Nematodes kill the amoebae but disperse the spores. The sheath that is constructed when the social amoebae aggregate and the spore coats of the individual cells may protect against this predator. Individual amoebae may also protect themselves by secreting compounds that repel nematodes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

All multicellular organisms have mechanisms for killing their own cells, and use physiological cell death for defence, development, homeostasis, and aging. Apoptosis is a morphologically recognizable form of cell death that is implemented by a mechanism that has been conserved throughout evolution from nematode to man. Thus homologs of the genes that implement cell death in nematodes also do so in mammals, but in mammals the process is considerably more complex, involving multiple isoforms of the components of the cell death machinery. In some circumstances this allows independent regulation of pathways that converge upon a common end point. A molecular understanding of this mechanism may allow design of therapies that either enhance or block cell death at will.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hookworms are hematophagous nematodes that infect a wide range of mammalian hosts, including humans. There has been speculation for nearly a century as to the identity of the anticoagulant substances) used by these organisms to subvert host hemostasis. Using molecular cloning, we describe a family of potent small protein (75-84 amino acids) anticoagulants from the hookworm Ancylostoma caninum termed AcAP (A. caninum anticoagulant protein). Two recombinant AcAP members (AcAP5 and AcAP6) directly inhibited the catalytic activity of blood coagulation factor Xa (fXa), while a third form (AcAPc2) predominantly inhibited the catalytic activity of a complex composed of blood coagulation factor VIIa and tissue factor (fVIIa/TF). The inhibition of fVIIa/TF was by a unique mechanism that required the initial formation of a binary complex of the inhibitor with fXa at a site on the enzyme that is distinct from the catalytic center (exo-site). The sequence of AcAPc2 as well as the utilization of an exo-site on fXa distinguishes this inhibitor from the mammalian anticoagulant TFPI (tissue factor pathway inhibitor), which is functionally equivalent with respect to fXa-dependent inhibition of fIIa/TF. The relative sequence positions of the reactive site residues determined for AcAP5 with the homologous regions in AcAP6 and AcAPc2 as well as the pattern of 10 cysteine residues present in each of the inhibitors suggest that the AcAPs are distantly related to the family of small protein serine protease inhibitors found in the nonhematophagous nematode Ascaris lumbricoides var. suum.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Evasion of host immunity by Toxocara canis infective larvae is mediated by the nematode surface coat, which is shed in response to binding by host antibody molecules or effector cells. The major constituent of the coat is the TES-120 glycoprotein series. We have isolated a 730-bp cDNA from the gene encoding the apoprotein precursor of TES-120. The mRNA is absent from T. canis adults but hyperabundant in larvae, making up approximately 10% of total mRNA, and is trans-spliced with the nematode 5' leader sequence SL1. It encodes a 15.8-kDa protein (after signal peptide removal) containing a typical mucin domain: 86 amino acid residues, 72.1% of which are Ser or Thr, organized into an array of heptameric repeats, interspersed with proline residues. At the C-terminal end of the putative protein are two 36-amino acid repeats containing six Cys residues, in a motif that can also be identified in several genes in Caenorhabditis elegans. Although TES-120 displays size and charge heterogeneity, there is a single copy gene and a homogeneous size of mRNA. The association of overexpression of some membrane-associated mucins with immunosuppression and tumor metastasis suggests a possible model for the role of the surface coat in immune evasion by parasitic nematodes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this report we structurally and functionally define a binding domain that is involved in protein association and that we have designated EH (for Eps15 homology domain). This domain was identified in the tyrosine kinase substrate Eps15 on the basis of regional conservation with several heterogeneous proteins of yeast and nematode. The EH domain spans about 70 amino acids and shows approximately 60% overall amino acid conservation. We demonstrated the ability of the EH domain to specifically bind cytosolic proteins in normal and malignant cells of mesenchymal, epithelial, and hematopoietic origin. These observations prompted our search for additional EH-containing proteins in mammalian cells. Using an EH domain-specific probe derived from the eps15 cDNA, we cloned and characterized a cDNA encoding an EH-containing protein with overall similarity to Eps15; we designated this protein Eps15r (for Eps15-related). Structural comparison of Eps15 and Eps15r defines a family of signal transducers possessing extensive networking abilities including EH-mediated binding and association with Src homology 3-containing proteins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The gene encoding the glycolytic enzyme triose-phosphate isomerase (TPI; EC 5.3.1.1) has been central to the long-standing controversy on the origin and evolutionary significance of spliceosomal introns by virtue of its pivotal support for the introns-early view, or exon theory of genes. Putative correlations between intron positions and TPI protein structure have led to the conjecture that the gene was assembled by exon shuffling, and five TPI intron positions are old by the criterion of being conserved between animals and plants. We have sequenced TPI genes from three diverse eukaryotes--the basidiomycete Coprinus cinereus, the nematode Caenorhabditis elegans, and the insect Heliothis virescens--and have found introns at seven novel positions that disrupt previously recognized gene/protein structure correlations. The set of 21 TPI introns now known is consistent with a random model of intron insertion. Twelve of the 21 TPI introns appear to be of recent origin since each is present in but a single examined species. These results, together with their implication that as more TPI genes are sequenced more intron positions will be found, render TPI untenable as a paradigm for the introns-early theory and, instead, support the introns-late view that spliceosomal introns have been inserted into preexisting genes during eukaryotic evolution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have discovered that three longevity mutants of the nematode Caenorhabditis elegans also exhibit increased intrinsic thermotolerance (Itt) as young adults. Mutation of the age-1 gene causes not only 65% longer life expectancy but also Itt. The Itt phenotype cosegregates with age-1. Long-lived spe-26 and daf-2 mutants also exhibit Itt. We investigated the relationship between increased thermotolerance and increased life-span by developing conditions for environmental induction of thermotolerance. Such pretreatments at sublethal temperatures induce significant increases in thermotolerance and small but statistically highly significant increases in life expectancy, consistent with a causal connection between these two traits. Thus, when an animal's resistance to stress is increased, by either genetic or environmental manipulation, we also observe an increase in life expectancy. These results suggest that ability to respond to stress limits the life expectancy of C. elegans and might do so in other metazoa as well.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The perienteric hemoglobin of the parasitic nematode Ascaris has an exceptionally high affinity for oxygen. It is an octameric protein containing two similar heme-binding domains per subunit, but recombinant constructs expressing a single, monomeric heme-binding domain (domain 1; D1) retain full oxygen avidity. We have solved the crystal structure of D1 at 2.2 A resolution. Analysis of the structure reveals a characteristic globin fold and illuminates molecular features involved in oxygen avidity of Ascaris perienteric hemoglobin. A strong hydrogen bond between tyrosine at position 10 in the B helix (tyrosine-B10) and the distal oxygen of the ligand, combined with a weak hydrogen bond between glutamine-E7 and the proximal oxygen, grips the ligand in the binding pocket. A third hydrogen bond between these two amino acids appears to stabilize the structure. The B helix of D1 is displaced laterally by 2.5 A when compared with sperm whale myoglobin. This shifts the tyrosine-B10 hydroxyl far enough from liganded oxygen to form a strong hydrogen bond without steric hindrance. Changes in the F helix compared with myoglobin contribute to a tilted heme that may also be important for oxygen affinity.