947 resultados para metal surface


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The prevalence and concentrations of Campylobacter jejuni, Salmonella spp. and enterohaemorrhagic E. coli (EHEC) were investigated in surface waters in Brisbane, Australia using quantitative PCR (qPCR) based methodologies. Water samples were collected from Brisbane City Botanic Gardens (CBG) Pond, and two urban tidal creeks (i.e., Oxley Creek and Blunder Creek). Of the 32 water samples collected, 8 (25%), 1 (3%), 9 (28%), 14 (44%), and 15 (47%) were positive for C. jejuni mapA, Salmonella invA, EHEC O157 LPS, EHEC VT1, and EHEC VT2 genes, respectively. The presence/absence of the potential pathogens did not correlate with either E. coli or enterococci concentrations as determined by binary logistic regression. In conclusion, the high prevalence, and concentrations of potential zoonotic pathogens along with the concentrations of one or more fecal indicators in surface water samples indicate a poor level of microbial quality of surface water, and could represent a significant health risk to users. The results from the current study would provide valuable information to the water quality managers in terms of minimizing the risk from pathogens in surface waters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of particulate matter on environment and public health have been widely studied in recent years. A number of studies in the medical field have tried to identify the specific effect on human health of particulate exposure, but agreement amongst these studies on the relative importance of the particles’ size and its origin with respect to health effects is still lacking. Nevertheless, air quality standards are moving, as the epidemiological attention, towards greater focus on the smaller particles. Current air quality standards only regulate the mass of particulate matter less than 10 μm in aerodynamic diameter (PM10) and less than 2.5 μm (PM2.5). The most reliable method used in measuring Total Suspended Particles (TSP), PM10, PM2.5 and PM1 is the gravimetric method since it directly measures PM concentration, guaranteeing an effective traceability to international standards. This technique however, neglects the possibility to correlate short term intra-day variations of atmospheric parameters that can influence ambient particle concentration and size distribution (emission strengths of particle sources, temperature, relative humidity, wind direction and speed and mixing height) as well as human activity patterns that may also vary over time periods considerably shorter than 24 hours. A continuous method to measure the number size distribution and total number concentration in the range 0.014 – 20 μm is the tandem system constituted by a Scanning Mobility Particle Sizer (SMPS) and an Aerodynamic Particle Sizer (APS). In this paper, an uncertainty budget model of the measurement of airborne particle number, surface area and mass size distributions is proposed and applied for several typical aerosol size distributions. The estimation of such an uncertainty budget presents several difficulties due to i) the complexity of the measurement chain, ii) the fact that SMPS and APS can properly guarantee the traceability to the International System of Measurements only in terms of number concentration. In fact, the surface area and mass concentration must be estimated on the basis of separately determined average density and particle morphology. Keywords: SMPS-APS tandem system, gravimetric reference method, uncertainty budget, ultrafine particles.