966 resultados para Mitochondrial dysfunction


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study aimed to determine if 50 days of canola oil intake in the absence or presence of salt loading affects: (1) antioxidant and oxidative stress markers, (2) aortic mRNA of NADPH oxidase (NOX) subunits and superoxide dismutase (SOD) isoforms and (3) endothelial function in SHRSP rats. SHRSP rats were fed a diet containing 10 wt/wt% soybean oil or 10 wt/wt% canola oil, and given tap water or water containing 1% NaCl for 50 days. Without salt, canola oil significantly increased RBC SOD, plasma cholesterol and triglycerides, aortic p22phox, NOX2 and CuZn-SOD mRNA, and decreased RBC glutathione peroxidase activity. With salt, canola oil reduced RBC SOD and catalase activity, LDL-C, and p22phox mRNA compared with canola oil alone, whereas plasma malondialdehyde (MDA) was reduced and RBC MDA and LDL-C were higher. With salt, the canola oil group had significantly reduced endothelium-dependent vasodilating responses to ACh and contractile responses to norepinephrine compared with the canola oil group without salt and to the WKY rats. These results indicate that ingestion of canola oil increases O2 - generation, and that canola oil ingestion in combination with salt leads to endothelial dysfunction in the SHRSP model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE : Annexin-A1 (ANX-A1) is an endogenous, glucocorticoid-regulated anti-inflammatory protein. The N-terminal-derived peptide Ac-ANX-A12–26 preserves cardiomyocyte viability, but the impact of ANX-A1-peptides on cardiac contractility is unknown. We now test the hypothesis that ANX-A1 preserves post-ischaemic recovery of left ventricular (LV) function.

EXPERIMENTAL APPROACH : Ac-ANX-A12–26 was administered on reperfusion, to adult rat cardiomyocytes as well as hearts isolated from rats, wild-type mice and mice deficient in endogenous ANX-A1 (ANX-A1–/–). Myocardial viability and recovery of LV function were determined.

KEY RESULTS: Ischaemia–reperfusion markedly impaired both cardiomyocyte viability and recovery of LV function by 60%. Treatment with exogenous Ac-ANX-A12–26 at the onset of reperfusion prevented cardiomyocyte injury and significantly improved recovery of LV function, in both intact rat and wild-type mouse hearts. Ac-ANX-A12–26 cardioprotection was abolished by either formyl peptide receptor (FPR)-nonselective or FPR1-selective antagonists, Boc2 and cyclosporin H, but was relatively insensitive to the FPR2-selective antagonist QuinC7. ANX-A1-induced cardioprotection was associated with increased phosphorylation of the cell survival kinase Akt. ANX-A1−/− exaggerated impairment of post-ischaemic recovery of LV function, in addition to selective LV FPR1 down-regulation.

CONCLUSIONS AND IMPLICATIONS : These data represent the first evidence that ANX-A1 affects myocardial function. Our findings suggest ANX-A1 is an endogenous regulator of post-ischaemic recovery of LV function. Furthermore, the ANX-A1-derived peptide Ac-ANX-A12–26 on reperfusion rescues LV function, probably via activation of FPR1. ANX-A1-based therapies may thus represent a novel clinical approach for the prevention and treatment of myocardial reperfusion injury.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated the muscle structure-function relationships that underlie the aerobic capacity of an insectivorous, small (~15?g) marsupial, Sminthopsis crassicaudata (Family: Dasyuridae), to obtain further insight into energy use patterns in marsupials relative to those in placentals, their sister clade within the Theria (advanced mammals). Disparate hopping marsupials (Suborder Macropodiformes), a kangaroo (Macropus rufus) and a rat-kangaroo (Bettongia penicillata), show aerobic capabilities as high as those of 'athletic' placentals. Equivalent muscle mitochondrial volumes and cardiovascular features support these capabilities. We examined S. crassicaudata to determine whether highly developed aerobic capabilities occur elsewhere in marsupials, rather than being restricted to the more recently evolved Macropodiformes. This was the case. Treadmill-trained S. crassicaudata attained a maximal aerobic metabolic rate (VO2,max or MMR) of 272ml O2min-1kg -1 (N=8), similar to that reported for a small (?20g), 'athletic' placental, Apodemus sylvaticus, 264ml O2min -1kg-1. Hopping marsupials have comparable aerobic levels when body mass variation is considered. Sminthopsis crassicaudata has a basal metabolic rate (BMR) about 75% of placental values but it has a notably large factorial aerobic scope (fAS) of 13, elevated fAS also features in hopping marsupials. The VO2,max of S. crassicaudata was supported by an elevated total muscle mitochondrial volume, which was largely achieved through high muscle mitochondrial volume densities, Vv(mt,f), the mean value being 14.0±1.33%. These data were considered in relation to energy use levels in mammals, particularly field metabolic rate (FMR). BMR is consistently lower in marsupials, but this is balanced by a high fAS, such that marsupial MMR matches that of placentals. However, FMR shows different mass relationships in the two clades, with the FMR of small (<, 125 g) marsupials, such as S. crassicaudata, being higher than that in comparably sized placentals, with the reverse applying for larger marsupials. The flexibility of energy output in marsupials provides explanations for this pattern. Overall, our data refute widely held notions of mechanistically closely linked relationships between body mass, BMR, FMR and MMR in mammals generally.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Swiftlets are small insectivorous birds, many of which nest in caves and are known to echolocate. Due to a lack of distinguishing morphological characters, the taxonomy of swiftlets is primarily based on the presence or absence of echolocating ability, together with nest characters. To test the reliability of these behavioral characters, we constructed an independent phylogeny using cytochrome b mitochondrial DNA sequences from swiftlets and their relatives. This phylogeny is broadly consistent with the higher classification of swifts but does not support the monophyly of swiftlets. Echolocating swiftlets (Aerodramus) and the nonecholocating "giant swiftlet" (Hydrochous gigas) group together, but the remaining nonecholocating swiftlets belonging to Collocalia are not sister taxa to these swiftlets. While echolocation may be a synapomorphy of Aerodramus (perhaps secondarily lost in Hydrochous), no character of Aerodramus nests showed a statistically significant fit to the molecular phylogeny, indicating that nest characters are not phylogenetically reliable in this group.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this research was to examine the impact of the xanthine oxidase (XO) inhibitor allopurinol on the skeletal muscle activation of cell signaling kinases' and adaptations to mitochondrial proteins and antioxidant enzymes following acute endurance exercise and endurance training. Male Sprague-Dawley rats performed either acute exercise (60 min of treadmill running, 27 m/min, 5% incline) or 6 wk of endurance training (5 days/wk) while receiving allopurinol or vehicle. Allopurinol treatment reduced XO activity to 5% of the basal levels (P < 0.05), with skeletal muscle uric acid levels being almost undetectable. Following acute exercise, skeletal muscle oxidized glutathione (GSSG) significantly increased in allopurinol- and vehicle-treated groups despite XO activity and uric acid levels being unaltered by acute exercise (P < 0.05). This suggests that the source of ROS was not from XO. Surprisingly, muscle GSSG levels were significantly increased following allopurinol treatment. Following acute exercise, allopurinol treatment prevented the increase in p38 MAPK and ERK phosphorylation and attenuated the increase in mitochondrial transcription factor A (mtTFA) mRNA (P < 0.05) but had no effect on the increase in peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), nuclear respiratory factor-2, GLUT4, or superoxide dismutase mRNA. Allopurinol also had no impact on the endurance training-induced increases in PGC-1α, mtTFA, and mitochondrial proteins including cytochrome c, citrate synthase, and β-hydroxyacyl-CoA dehydrogenase. In conclusion, although allopurinol inhibits cell signaling pathways in response to acute exercise, the inhibitory effects of allopurinol appear unrelated to exercise-induced ROS production by XO. Allopurinol also has little effect on increases in mitochondrial proteins following endurance training.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In species of conservation concern it is often difficult to be certain that population diversity and structure have been adequately characterised by genetic sampling. Since practical and financial constraints tend to be associated with increasing sample sizes in many conservation genetic studies, it is important to consider the potential for sampling error and bias due to inadequate samples or spatio-temporal structure within populations. We analysed sequence data from the mitochondrial DNA control region in a large sample (n = 245) of green sea turtles Chelonia mydas collected at the globally important rookery of Ascension Island, South Atlantic. We examined genetic diversity and structure among 10 sampling sites, 4 beach clusters and 4 nesting seasons, and evaluated the genetic composition of Ascension against other Atlantic nesting populations, including the well-studied rookery at Tortuguero (Costa Rica). Finally, we used rarefaction and GENESAMP analyses to assess the ability of different sample sizes to provide acceptable genetic representations of a population, using Ascension and Tortuguero as models. On Ascension, we found 13 haplotypes, of which only 3 had been previously observed in the rookery, and 5 previously undescribed. We detected no differentiation among beach clusters or sampling seasons, and only weak differentiation among the 3 primary nesting sites. The increased sample size for Ascension provided higher resolution and statistical power in describing genetic structure among all other known Atlantic rookeries. Our extrapolations showed that a maximum of 18 and 6 haplotypes are expected to occur in Ascension and Tortuguero, respectively, and that current sample sizes are sufficient to describe most of the variation. We recommend using rarefaction and GENESAMP analyses on a rookery-by-rookery basis to evaluate whether a sample set adequately describes mitochondrial DNA diversity, thus strengthening subsequent phylogeographic and mixed stock analyses, and management recommendations for conservation.