987 resultados para GATA Transcription Factors


Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report on the molecular characterization of a microdeletion of approximately 2.5 Mb at 2p11.2 in a female baby with left congenital aural atresia, microtia, and ipsilateral internal carotid artery agenesis. The deletion was characterized by fluorescence in situ hybridization, array comparative genomic hybridization, and whole genome re-sequencing. Among the genes present in the deleted region, we focused our attention on the FOXI3 gene. Foxi3 is a member of the Foxi class of Forkhead transcription factors. In mouse, chicken and zebrafish Foxi3 homologues are expressed in the ectoderm and endoderm giving rise to elements of the jaw as well as external, middle and inner ear. Homozygous Foxi3-/- mice have recently been generated and show a complete absence of the inner, middle, and external ears as well as severe defects in the jaw and palate. Recently, a 7-bp duplication within exon 1 of FOXI3 that produces a frameshift and a premature stop codon was found in hairless dogs. Mild malformations of the outer auditory canal (closed ear canal) and ear lobe have also been noted in a fraction of FOXI3 heterozygote Peruvian hairless dogs. Based on the phenotypes of Foxi3 mutant animals, we propose that FOXI3 may be responsible for the phenotypic features of our patient. Further characterization of the genomic region and the analysis of similar patients may help to demonstrate this point. © 2015 Wiley Periodicals, Inc.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND SIRT2 belongs to a highly conserved family of NAD+-dependent deacylases, consisting of seven members (SIRT1-SIRT7), which vary in subcellular localizations and have substrates ranging from histones to transcription factors and enzymes. Recently SIRT2 was revealed to play an important role in inflammation, directly binding, deacetylating, and inhibiting the p65 subunit of NF-κB. METHODS A Sirt2 deficient mouse line (Sirt2-/-) was generated by deleting exons 5-7, encoding part of the SIRT2 deacetylase domain, by homologous recombination. Age- and sex-matched Sirt2-/- and Sirt2+/+ littermate mice were subjected to dextran sulfate sodium (DSS)-induced colitis and analyzed for colitis susceptibility. RESULTS Sirt2-/- mice displayed more severe clinical and histological manifestations after DSS colitis compared to wild type littermates. Notably, under basal condition, Sirt2 deficiency does not affect the basal phenotype and intestinal morphology Sirt2 deficiency, however, affects macrophage polarization, creating a pro-inflammatory milieu in the immune cells compartment. CONCLUSION These data confirm a protective role for SIRT2 against the development of inflammatory processes, pointing out a potential role for this sirtuin as a suppressor of colitis. In fact, SIRT2 deletion promotes inflammatory responses by increasing NF-κB acetylation and by reducing the M2-associated anti-inflammatory pathway. Finally, we speculate that the activation of SIRT2 may be a potential approach for the treatment of inflammatory bowel disease.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND Rhinovirus infections are the dominant cause of asthma exacerbations, and deficient virus induction of IFN-α/β/λ in asthmatic patients is important in asthma exacerbation pathogenesis. Mechanisms causing this interferon deficiency in asthmatic patients are unknown. OBJECTIVE We sought to investigate the expression of suppressor of cytokine signaling (SOCS) 1 in tissues from asthmatic patients and its possible role in impaired virus-induced interferon induction in these patients. METHODS We assessed SOCS1 mRNA and protein levels in vitro, bronchial biopsy specimens, and mice. The role of SOCS1 was inferred by proof-of-concept studies using overexpression with reporter genes and SOCS1-deficient mice. A nuclear role of SOCS1 was shown by using bronchial biopsy staining, overexpression of mutant SOCS1 constructs, and confocal microscopy. SOCS1 levels were also correlated with asthma-related clinical outcomes. RESULTS We report induction of SOCS1 in bronchial epithelial cells (BECs) by asthma exacerbation-related cytokines and by rhinovirus infection in vitro. We found that SOCS1 was increased in vivo in bronchial epithelium and related to asthma severity. SOCS1 expression was also increased in primary BECs from asthmatic patients ex vivo and was related to interferon deficiency and increased viral replication. In primary human epithelium, mouse lung macrophages, and SOCS1-deficient mice, SOCS1 suppressed rhinovirus induction of interferons. Suppression of virus-induced interferon levels was dependent on SOCS1 nuclear translocation but independent of proteasomal degradation of transcription factors. Nuclear SOCS1 levels were also increased in BECs from asthmatic patients. CONCLUSION We describe a novel mechanism explaining interferon deficiency in asthmatic patients through a novel nuclear function of SOCS1 and identify SOCS1 as an important therapeutic target for asthma exacerbations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

OBJECTIVE Several pathogenic roles attributed over the past two decades to either T helper (Th)1 or Th2 cells are increasingly becoming associated with interleukin (IL)-17 and most recently IL-9 signalling. However, the implication of IL-9 in IBD has not been addressed so far. DESIGN We investigated the expression of IL-9 and IL-9R by using peripheral blood, biopsies and surgical samples. We addressed the functional role of IL-9 signalling by analysis of downstream effector proteins. Using Caco-2 cell monolayers we followed the effect of IL-9 on wound healing. RESULTS IL-9 mRNA expression was significantly increased in inflamed samples from patients with UC as compared with controls. CD3(+) T cells were major IL-9-expressing cells and some polymorphonuclear leucocytes (PMN) also expressed IL-9. IL-9 was co-localised with the key Th9 transcription factors interferon regulatory factor 4 and PU.1. Systemically, IL-9 was abundantly produced by activated peripheral blood lymphocytes, whereas its receptor was overexpressed on gut resident and circulating PMN. IL-9 stimulation of the latter induced IL-8 production in a dose-dependent manner and rendered PMN resistant to apoptosis suggesting a functional role for IL-9R signalling in the propagation of gut inflammation. Furthermore, IL-9R was overexpressed on gut epithelial cells and IL-9 induced STAT5 activation in these cells. Moreover, IL-9 inhibited the growth of Caco-2 epithelial cell monolayers in wound healing experiments. CONCLUSIONS Our results provide evidence that IL-9 is predominantly involved in the pathogenesis of UC suggesting that targeting IL-9 might become a therapeutic option for patients with UC.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The susceptibility of humans to the variant Creutzfeldt-Jakob disease is greatly influenced by polymorphisms within the human prion protein gene (PRNP). Similar genetic differences exist in sheep, in which PRNP polymorphisms modify the susceptibility to scrapie. However, the known coding polymorphisms within the bovine PRNP gene have little or no effect on bovine spongiform encephalopathy (BSE) susceptibility in cattle. We have recently found a tentative association between PRNP promoter polymorphisms and BSE susceptibility in German cattle (Sander, P., Hamann, H., Pfeiffer, I., Wemheuer, W., Brenig, B., Groschup, M., Ziegler, U., Distl, O., and Leeb, T. (2004) Neurogenetics 5, 19-25). A plausible hypothesis explaining this observation could be that the bovine PRNP promoter polymorphisms cause changes in PRNP expression that might be responsible for differences in BSE incubation time and/or BSE susceptibility. To test this hypothesis, we performed a functional promoter analysis of the different bovine PRNP promoter alleles by reporter gene assays in vitro and by measuring PRNP mRNA levels in calves with different PRNP genotypes in vivo. Two variable sites, a 23-bp insertion/deletion (indel) polymorphism containing a RP58-binding site and a 12-bp indel polymorphism containing an SP1-binding site, were investigated. Band shift assays indicated differences in transcription factor binding to the different alleles at the two polymorphisms. Reporter gene assays demonstrated an interaction between the two postulated transcription factors and lower expression levels of the ins/ins allele compared with the del/del allele. The in vivo data revealed substantial individual variation of PRNP expression in different tissues. In intestinal lymph nodes, expression levels differed between the different PRNP genotypes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND AND OBJECTIVE Connective tissue grafts are frequently applied, together with Emdogain(®) , for root coverage. However, it is unknown whether fibroblasts from the gingiva and from the palate respond similarly to Emdogain. The aim of this study was therefore to evaluate the effect of Emdogain(®) on fibroblasts from palatal and gingival connective tissue using a genome-wide microarray approach. MATERIAL AND METHODS Human palatal and gingival fibroblasts were exposed to Emdogain(®) and RNA was subjected to microarray analysis followed by gene ontology screening with Database for Annotation, Visualization and Integrated Discovery functional annotation clustering, Kyoto Encyclopedia of Genes and Genomes pathway analysis and the Search Tool for the Retrieval of Interacting Genes/Proteins functional protein association network. Microarray results were confirmed by quantitative RT-PCR analysis. RESULTS The transcription levels of 106 genes were up-/down-regulated by at least five-fold in both gingival and palatal fibroblasts upon exposure to Emdogain(®) . Gene ontology screening assigned the respective genes into 118 biological processes, six cellular components, eight molecular functions and five pathways. Among the striking patterns observed were the changing expression of ligands targeting the transforming growth factor-beta and gp130 receptor family as well as the transition of mesenchymal epithelial cells. Moreover, Emdogain(®) caused changes in expression of receptors for chemokines, lipids and hormones, and for transcription factors such as SMAD3, peroxisome proliferator-activated receptor gamma and those of the ETS family. CONCLUSION The present data suggest that Emdogain(®) causes substantial alterations in gene expression, with similar patterns observed in palatal and gingival fibroblasts.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The classification of neuroendocrine neoplasms (NENs) has been evolving steadily over the last decades. Important prognostic factors of NENs are their proliferative activity and presence/absence of necrosis. These factors are reported in NENs of all body sites; however, the terminology as well as the exact rules of classification differ according to the location of the primary tumor. Only in gastroenteropancreatic (GEP) NENs a formal grading is performed. This grading is based on proliferation assessed by the mitotic count and/or Ki-67 proliferation index. In the lung, NEN grading is an intrinsic part of the tumor designation with typical carcinoids corresponding to neuroendocrine tumor (NET) G1 and atypical carcinoids to NET G2; however, the presence or absence of necrotic foci is as important as proliferation for the differentiation between typical and atypical carcinoids. Immunohistochemical markers can be used to demonstrate neuroendocrine differentiation. Synaptophysin and chromogranin A are, to date, the most reliable and most commonly used for this purpose. Beyond this, other markers can be helpful, for example in the situation of a NET metastasis of unknown primary, where a hormonal profile or a panel of transcription factors can give hints to the primary site. Many immunohistochemical markers have been shown to correlate with prognosis but are not used in clinical practice, for example cytokeratin 19 and KIT expression in pancreatic NETs. There is no predictive biomarker in use, with the exception of somatostatin receptor (SSTR) 2 expression for predicting the amenability of a tumor to in vivo SSTR targeting for imaging or therapy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Propionibacterium acnes is a Gram-positive commensal bacterium thought to be involved in the pathogenesis of acne vulgaris. Although the ability of P. acnes in the initiation of pro-inflammatory responses is well documented, little is known about adaptive immune responses to this bacterium. The observation that infiltrating immune cells consist mainly of CD4(+) T cells in the perifollicular space of early acne lesions suggests that helper T cells may be involved in immune responses caused by the intra-follicular colonization of P. acnes. A recent report showing that P. acnes can induce IL-17 production by T cells suggests that acne might be a T helper type 17 (Th17)-mediated disease. In line with this, we show in this work that, in addition to IL-17A, both Th1 and Th17 effector cytokines, transcription factors, and chemokine receptors are strongly upregulated in acne lesions. Furthermore, we found that, in addition to Th17, P. acnes can promote mixed Th17/Th1 responses by inducing the concomitant secretion of IL-17A and IFN-γ from specific CD4(+) T cells in vitro. Finally, we show that both P. acnes-specific Th17 and Th17/Th1 cells can be found in the peripheral blood of patients suffering from acne and, at lower frequencies, in healthy individuals. We therefore identified P. acnes-responding Th17/Th1 cells as, to our knowledge, a previously unreported CD4(+) subpopulation involved in inflammatory acne.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dendritic cells (DC) have a main function in innate immunity in that they sense infections and environmental antigens at the skin and mucosal surfaces and thereby critically influence decisions about immune activation or tolerance. As professional antigen-presenting cells, they are essential for induction of adaptive immune responses. Consequently, knowledge on this cell type is required to understand the immune systems of veterinary mammals, including cattle, sheep, pigs, dogs, cats, and horses. Recent ontogenic studies define bona fide DC as an independent lineage of hematopoietic cells originating from a common precursor. Distinct transcription factors control the development into the two subsets of classical DC and plasmacytoid DC. These DC subsets express a distinguishable transcriptome, which differs from that of monocyte-derived DC. Using a comparative approach based on phenotype and function, this review attempts to classify DC of veterinary mammals and to describe important knowledge gaps.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

PURPOSE In acute myeloid leukemia (AML), the transcription factors CEBPA and KLF4 as well as the universal tumor suppressor p53 are frequently deregulated. Here, we investigated the extent of dysregulation, the molecular interactions, and the mechanisms involved. EXPERIMENTAL DESIGN One hundred ten AML patient samples were analyzed for protein levels of CEBPA, KLF4, p53, and p53 modulators. Regulation of CEBPA gene expression by KLF4 and p53 or by chemical p53 activators was characterized in AML cell lines. RESULTS We found that CEBPA gene transcription can be directly activated by p53 and KLF4, suggesting a p53-KLF4-CEBPA axis. In AML patient cells, we observed a prominent loss of p53 function and concomitant reduction of KLF4 and CEBPA protein levels. Assessment of cellular p53 modulator proteins indicated that p53 inactivation in leukemic cells correlated with elevated levels of the nuclear export protein XPO1/CRM1 and increase of the p53 inhibitors MDM2 and CUL9/PARC in the cytoplasm. Finally, restoring p53 function following treatment with cytotoxic chemotherapy compounds and p53 restoring non-genotoxic agents induced CEBPA gene expression, myeloid differentiation, and cell-cycle arrest in AML cells. CONCLUSIONS The p53-KLF4-CEBPA axis is deregulated in AML but can be functionally restored by conventional chemotherapy and novel p53 activating treatments. Clin Cancer Res; 22(3); 746-56. ©2015 AACR.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Calreticulin (CALR) is a highly conserved, multifunctional protein involved in a variety of cellular processes including the maintenance of intracellular calcium homeostasis, proper protein folding, differentiation and immunogenic cell death. More recently, a crucial role for CALR in the pathogenesis of certain hematologic malignancies was discovered: in clinical subgroups of acute myeloid leukemia, CALR overexpression mediates a block in differentiation, while somatic mutations have been found in the majority of patients with myeloproliferative neoplasms with nonmutated Janus kinase 2 gene (JAK2) or thrombopoietin receptor gene (MPL). However, the mechanisms underlying CALR promoter activation have insufficiently been investigated so far. By dissecting the core promoter region, we could identify a functional TATA-box relevant for transcriptional activation. In addition, we characterized two evolutionary highly conserved cis-regulatory modules (CRMs) within the proximal promoter each composed of one binding site for the transcription factors SP1 and SP3 as well as for the nuclear transcription factor Y (NFY) and we verified binding of these factors to their cognate sites in vitro and in vivo.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Small cell lung cancer (SCLC) accounts for 15% of lung cancer cases and is associated with a dismal prognosis. Standard therapeutic regimens have been improved over the past decades, but without a major impact on patient survival. The development of targeted therapies based on a better understanding of the molecular basis of the disease is urgently needed. At the genetic level, SCLC appears very heterogenous, although somatic mutations targeting classical oncogenes and tumor suppressors have been reported. SCLC also possesses somatic mutations in many other cancer genes, including transcription factors, enzymes involved in chromatin modification, receptor tyrosine kinases and their downstream signaling components. Several avenues have been explored to develop targeted therapies for SCLC. So far, however, there has been limited success with these targeted approaches in clinical trials. Further progress in the optimization of targeted therapies for SCLC will require the development of more personalized approaches for the patients.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

PURPOSE OF REVIEW Progressive cardiac conduction disorder (PCCD) is an inherited cardiac disease that may present as a primary electrical disease or be associated with structural heart disease. In this brief review, we present recent clinical, genetic, and molecular findings relating to PCCD. RECENT FINDINGS Inherited PCCD in structurally normal hearts has been found to be linked to genetic variants in the ion channel genes SCN5A, SCN1B, SCN10A, TRPM4, and KCNK17, as well as in genes coding for cardiac connexin proteins. In addition, several SCN5A mutations lead to 'cardiac sodium channelopathy overlap syndrome'. Other genes coding for cardiac transcription factors, such as NKX2.5 and TBX5, are involved in the development of the cardiac conduction system and in the morphogenesis of the heart. Mutations in these two genes have been shown to cause cardiac conduction disorders associated with various congenital heart defects. SUMMARY PCCD is a hereditary syndrome, and genetic variants in multiple genes have been described to date. Genetic screening and identification of the causal mutation are crucial for risk stratification and family counselling.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Neurons exploit local mRNA translation and retrograde transport of transcription factors to regulate gene expression in response to signaling events at distal neuronal ends. Whether epigenetic factors could also be involved in such regulation is not known. We report that the mRNA encoding the high-mobility group N5 (HMGN5) chromatin binding protein localizes to growth cones of both neuron-like cells and of hippocampal neurons, where it has the potential to be translated, and that HMGN5 can be retrogradely transported into the nucleus along neurites. Loss of HMGN5 function induces transcriptional changes and impairs neurite outgrowth, while HMGN5 overexpression induces neurite outgrowth and chromatin decompaction; these effects are dependent on growth cone localization of Hmgn5 mRNA. We suggest that the localization and local translation of transcripts coding for epigenetic factors couple the dynamic neuronal outgrowth process with chromatin regulation in the nucleus.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Theileria parva and T. annulata provide intriguing models for the study of parasite-host interactions. Both parasites possess the unique property of being able to transform the cells they infect; T. parva transforms T and B cells, whereas T. annulata affects B cells and monocytes/macrophages. Parasitized cells do not require antigenic stimulation or exogenous growth factors and acquire the ability to proliferate continuously. In vivo, parasitized cells undergo clonal expansion and infiltrate both lymphoid and non-lymphoid tissues of the infected host. Theileria-induced transformation is entirely reversible and is accompanied by the expression of a wide range of different lymphokines and cytokines, some of which may contribute to proliferation or may enhance spread and survival of the parasitized cell in the host. The presence of the parasite in the host-cell cytoplasm modulates the state of activation of a number of signal transduction pathways. This, in turn, leads to the activation of transcription factors, including nuclear factor-kappa B, which appear to be essential for the survival of Theileria-transformed T cells.