958 resultados para Fibroblasts
Resumo:
We have investigated the use of hierarchical clustering of flow cytometry data to classify samples of conventional central chondrosarcoma, a malignant cartilage forming tumor of uncertain cellular origin, according to similarities with surface marker profiles of several known cell types. Human primary chondrosarcoma cells, articular chondrocytes, mesenchymal stem cells, fibroblasts, and a panel of tumor cell lines from chondrocytic or epithelial origin were clustered based on the expression profile of eleven surface markers. For clustering, eight hierarchical clustering algorithms, three distance metrics, as well as several approaches for data preprocessing, including multivariate outlier detection, logarithmic transformation, and z-score normalization, were systematically evaluated. By selecting clustering approaches shown to give reproducible results for cluster recovery of known cell types, primary conventional central chondrosacoma cells could be grouped in two main clusters with distinctive marker expression signatures: one group clustering together with mesenchymal stem cells (CD49b-high/CD10-low/CD221-high) and a second group clustering close to fibroblasts (CD49b-low/CD10-high/CD221-low). Hierarchical clustering also revealed substantial differences between primary conventional central chondrosarcoma cells and established chondrosarcoma cell lines, with the latter not only segregating apart from primary tumor cells and normal tissue cells, but clustering together with cell lines from epithelial lineage. Our study provides a foundation for the use of hierarchical clustering applied to flow cytometry data as a powerful tool to classify samples according to marker expression patterns, which could lead to uncover new cancer subtypes.
Resumo:
OBJECTIVE: Myofibroblasts are responsible for contraction and scarring after cleft palate repair. This leads to growth disturbances in the upper jaw. We hypothesized that cells from the bone marrow are recruited to palatal wounds and differentiate into myofibroblasts. METHODS: We transplanted bone marrow from green fluorescent protein (GFP)-transgenic rats into lethally irradiated wild-type rats. After recovery, experimental wounds were made in the palatal mucoperiosteum, and harvested 2 weeks later. GFP-expressing cells were identified using immunostaining. Myofibroblasts, activated fibroblasts, endothelial cells, and myeloid cells were quantified with specific markers. RESULTS: After transplantation, 89 ± 8.9% of mononuclear cells in the blood expressed the GFP and about 50% of adherent cells in the bone marrow. Tissue obtained during initial wounding contained only minor numbers of GFP-positive cells, like adjacent control tissue. Following wound healing, 8.1 ± 5.1% of all cells in the wound area were positive, and 5.0 ± 4.0% of the myofibroblasts, which was significantly higher than in adjacent tissue. Similar percentages were found for activated fibroblasts and endothelial cells, but for myeloid cells it was considerably higher (22 ± 9%). CONCLUSIONS: Bone marrow-derived cells contribute to palatal wound healing, but are not the main source of myofibroblasts. In small wounds, the local precursor cells are probably sufficient to replenish the defect.
Resumo:
Mechanical stress controls a broad range of cellular functions. The cytoskeleton is physically connected to the extracellular matrix via integrin receptors, and to the nuclear lamina by the LINC complex that spans both nuclear membranes. We asked here how disruption of this direct link from the cytoskeleton to nuclear chromatin affects mechanotransduction. Fibroblasts grown on flexible silicone membranes reacted to cyclic stretch by nuclear rotation. This rotation was abolished by inhibition of actomyosin contraction as well as by overexpression of dominant-negative versions of nesprin or sun proteins that form the LINC complex. In an in vitro model of muscle differentiation, cyclic strain inhibits differentiation and induces proliferation of C2C12 myoblasts. Interference with the LINC complex in these cells abrogated their stretch-induced proliferation, while stretch increased p38 MAPK and NFkappaB phosphorylation and the transcript levels of myogenic transcription factors MyoD and myogenin. We found that the physical link from the cytoskeleton to the nuclear lamina is crucial for correct mechanotransduction, and that disruption of the LINC complex perturbs the mechanical control of cell differentiation.
Resumo:
Neutral ceramidase (NCDase) and sphingosine kinases (SphKs) are key enzymes regulating cellular sphingosine-1-phosphate (S1P) levels. In this study we found that stress factor-induced apoptosis of rat renal mesangial cells was significantly reduced by dexamethasone treatment. Concomitantly, dexamethasone increased cellular S1P levels, suggesting an activation of sphingolipid-metabolizing enzymes. The cell-protective effect of glucocorticoids was reversed by a SphK inhibitor, was completely absent in SphK1-deficient cells, and was associated with upregulated mRNA and protein expression of NCDase and SphK1. Additionally, in vivo experiments in mice showed that dexamethasone also upregulated SphK1 mRNA and activity, and NCDase protein expression in the kidney. Fragments (2285, 1724, and 1126 bp) of the rat NCDase promoter linked to a luciferase reporter were transfected into rat kidney fibroblasts and mesangial cells. There was enhanced NCDase promoter activity upon glucocorticoids treatment that was abolished by the glucocorticoid receptor antagonist RU-486. Single and double mutations of the two putative glucocorticoid response element sites within the promoter reduced the dexamethasone effect, suggesting that both glucocorticoid response elements are functionally active and required for induction. Our study shows that glucocorticoids exert a protective effect on stress-induced mesangial cell apoptosis in vitro and in vivo by upregulating NCDase and SphK1 expression and activity, resulting in enhanced levels of the protective lipid second messenger S1P.
Resumo:
In Spinal Muscular Atrophy (SMA), the SMN1 gene is deleted or inactivated. Because of a splicing problem, the second copy gene, SMN2, generates insufficient amounts of functional SMN protein, leading to the death of spinal cord motoneurons. For a "severe" mouse SMA model (Smn -/-, hSMN2 +/+; with affected pups dying at 5-7 days), which most closely mimicks the genetic set-up in human SMA patients, we characterise SMA-related ultrastructural changes in neuromuscular junctions (NMJs) of two striated muscles with discrete functions. In the diaphragm, but not the soleus muscle of 4-days old SMA mice, mitochondria on both sides of the NMJs degenerate, and perisynaptic Schwann cells as well as endoneurial fibroblasts show striking changes in morphology. Importantly, NMJs of SMA mice in which a modified U7 snRNA corrects SMN2 splicing and delays or prevents SMA symptoms are normal. This ultrastructural study reveals novel features of NMJ alterations - in particular the involvement of perisynaptic Schwann cells - that may be relevant for human SMA pathogenesis.
Resumo:
Tooth resorption is among the most common and most challenging problems in feline dentistry It is a progressive disease eventually leading to tooth loss and often root replacement. The etiology of moth resorption remains obscure and to date no effective therapeutic approach is known. The present study is aimed at assessing the reliability of radiographic imaging and addressing the possible involvement of receptor activator of NF kappa B (RANK), its ligand (RANKL), and osteoprotegerin (OPG) in the process of tooth resorption. Teeth from 8 cats were investigated by means of radiographs and paraffin sections followed by immunolabeling. Six cats were diagnosed with tooth resorption based on histopathologic and radiographic findings. Samples were classified according to a four-stage diagnostic system. Radiologic assessment of tooth resorption correlated very strongly with histopathologic findings. Tooth resorption was accompanied by a strong staining with all three antibodies used, especially with anti-RANK and anti-RANKL antibodies. The presence of OPG and RANKL at the resorption site is indicative of repair attempts by fibroblasts and stromal cells. These findings should be extended by further investigations in order to elucidate the pathophysiologic processes underlying tooth resorption that might lead to prophylactic and/or therapeutic measures. J Vet Dent 27(2); 75 - 83, 2010
Resumo:
The ubiquitously expressed mammalian Na(+)/H(+) exchanger 1 (NHE1) controls cell volume and pH but is also critically involved in complex biological processes like cell adhesion, cell migration, cell proliferation, and mechanosensation. Pathways controlling NHE1 turnover at the plasma membrane, however, are currently unclear. Here, we demonstrate that NHE1 undergoes ubiquitylation at the plasma membrane by a process that is unprecedented for a mammalian ion transport protein. This process requires the adapter protein ?-arrestin-1 that interacts with both the E3 ubiquitin ligase Nedd4-1 and the NHE1 C terminus. Truncation of NHE1 C terminus to amino acid 550 abolishes binding to ?-arrestin-1 and NHE1 ubiquitylation. Overexpression of ?-arrestin-1 or of wild type but not ligase-dead Nedd4-1 increases NHE1 ubiquitylation. siRNA-mediated knock-down of Nedd4-1 or ?-arrestin-1 reduces NHE1 ubiquitylation and endocytosis leading to increased NHE1 surface levels. Fibroblasts derived from ?-arrestin-1 and Nedd4-1 knock-out mice show loss of NHE1 ubiquitylation, increased plasmalemmal NHE1 levels and greatly enhanced NHE1 transport compared with wild-type fibroblasts. These findings reveal Nedd4-1 and ?-arrestin-1 as key regulators of NHE1 ubiquitylation, endocytosis, and function. Our data suggest a broader role for ?-arrestins in the regulation of membrane ion transport proteins than currently known.
Resumo:
Meprins ? and ?, a subgroup of zinc metalloproteinases belonging to the astacin family, are known to cleave components of the extracellular matrix, either during physiological remodeling or in pathological situations. In this study we present a new role for meprins in matrix assembly, namely the proteolytic processing of procollagens. Both meprins ? and ? release the N- and C-propeptides from procollagen III, with such processing events being critical steps in collagen fibril formation. In addition, both meprins cleave procollagen III at exactly the same site as the procollagen C-proteinases, including bone morphogenetic protein-1 (BMP-1) and other members of the tolloid proteinase family. Indeed, cleavage of procollagen III by meprins is more efficient than by BMP-1. In addition, unlike BMP-1, whose activity is stimulated by procollagen C-proteinase enhancer proteins (PCPEs), the activity of meprins on procollagen III is diminished by PCPE-1. Finally, following our earlier observations of meprin expression by human epidermal keratinocytes, meprin ? is also shown to be expressed by human dermal fibroblasts. In the dermis of fibrotic skin (keloids), expression of meprin ? increases and meprin ? begins to be detected. Our study suggests that meprins could be important players in several remodeling processes involving collagen fiber deposition.
Resumo:
PURPOSE: This pilot study evaluated the wound healing and tissue response after placement of two different skin substitutes in subgingival mucosal pouches in rabbits. MATERIALS AND METHODS: Four rabbits were selected to receive a commercially available skin substitute consisting of a collagen matrix with fibroblasts and an epithelial layer (test membrane 1) and a prototype device consisting of a collagen matrix with fibroblasts only (test membrane 2). In each rabbit, two horizontal incisions were made in the buccal alveolar mucosa of the maxilla bilaterally to create submucosal pouches. Three pouches in each animal were filled with either the test 1 or test 2 membranes, and one pouch was left without a membrane (sham-operated control). All rabbits were sacrificed after a healing period of 4 weeks, and histologic samples were prepared and examined. RESULTS: After a healing period of 1 month, both tested membranes were still visible in the sections. Test membrane 1 was still bilayered, contained inflammatory cells in its center, and was encapsulated by a thick fibrous tissue. Numerous ectopic calcifications were evident in the collagenous part of the membrane and in association with some basal epithelial cells. Test membrane 2 was also encapsulated in fibrous tissue, with inflammatory cells present only between the fibrous encapsulation and the remnants of the membrane. For test membrane 2, no calcifications were visible. CONCLUSIONS: Test membrane 1 seemed to be more resistant to degradation, but there was also a more pronounced inflammatory reaction in comparison to test membrane 2, especially in the vicinity of the keratinocytes. The significance of the ectopic calcifications, along with that of the resorption or degradation processes of both tested membranes, must be evaluated in future experimental studies, with different time points after implantation examine
Resumo:
Wounded skin recruits progenitor cells, which repair the tissue defect. These cells are derived from stem cells in several niches in the skin. In addition, bone marrow-derived cells (BMDCs) are recruited and contribute to wound repair. We hypothesized that larger wounds recruit more cells from the bone marrow. Wild-type rats were lethally irradiated and transplanted with bone marrow cells from green fluorescent protein (GFP)-transgenic rats. Seven weeks later, 4, 10, and 20 mm wounds were created. The wound tissue was harvested after 14 days. The density of GFP-positive cells in the wounds and the adjacent tissues was determined, as well as in normal skin from the flank. Bone marrow-derived myofibroblasts, activated fibroblasts, and macrophages were also quantified. After correction for cell density, the recruitment of BMDCs (23±11%) was found to be independent of wound size. Similar fractions of GFP-positive cells were also detected in nonwounded adjacent tissue (29±11%), and in normal skin (26±19%). The data indicate that BMDCs are not preferentially recruited to skin wounds. Furthermore, wound size does not seem to affect the recruitment of BMDCs.
Resumo:
The extracellular matrix protein tenascin-C (TNC) is up-regulated in processes influenced by mechanical stress, such as inflammation, tissue remodeling, wound healing, and tumorigenesis. Cyclic strain-induced TNC expression depends on RhoA-actin signaling, the pathway that regulates transcriptional activity of serum response factor (SRF) by its coactivator megakaryoblastic leukemia-1 (MKL1). Therefore, we tested whether MKL1 controls TNC transcription. We demonstrate that overexpression of MKL1 strongly induces TNC expression in mouse NIH3T3 fibroblasts and normal HC11 and transformed 4T1 mammary epithelial cells. Part of the induction was dependant on SRF and a newly identified atypical CArG box in the TNC promoter. Another part was independent of SRF but required the SAP domain of MKL1. An MKL1 mutant incapable of binding to SRF still strongly induced TNC, while induction of the SRF target c-fos was abolished. Cyclic strain failed to induce TNC in MKL1-deficient but not in SRF-deficient fibroblasts, and strain-induced TNC expression strongly depended on the SAP domain of MKL1. Promoter-reporter and chromatin immunoprecipitation experiments unraveled a SAP-dependent, SRF-independent interaction of MKL1 with the proximal promoter region of TNC, attributing for the first time a functional role to the SAP domain of MKL1 in regulating gene expression.
Resumo:
The uncommon simultaneous occurrence of an exuberant, angioma-like proliferation of superficial cerebral microvessels along with absence of the kidneys has been proposed to constitute a syndromic complex for which the term "meningocerebral angiodysplasia (or angiomatosis) with renal agenesis" (MCA-RA) is being descriptively used. We observed this constellation in one of a pair of dichorionic male twins following postpartal death in the 38th week of pregnancy. General autopsy revealed rudimentary metanephric anlagen made up of few residual glomeruli, cysts lined by flattened tubular epithelium, and islands of cartilage - corresponding to renal aplastic dysplasia. Largely inconspicuous with respect to its gyral pattern, as well as the configuration of the ventricular system, the brain microscopically showed extensive replacement of the cortex by a lattice of proliferating capillaries with necrosis of the intervening parenchyma. Minute foci of calcified necrosis were scattered in the deep subcortical white matter as well, while the ventricular ependyma and the subventricular germ cell layer remained remarkably intact. The cerebellum and brain stem appeared unaffected as well. Karyotyping of skin fibroblasts indicated a normal chromosome set of 46XY without gross structural anomalies. We interpret these findings as ones apt to being reasonably accommodated within the spectrum of MCA-RA. Although exceedingly rare, accurate identification of individual cases of MCA-RA is relevant both to differential diagnosis from its prognostically different look-alike "proliferative vasculopathy and hydranencephaly-hydrocephaly" (PVHH), and to refine the nosology of unconventional pediatric vascular malformations, for which the rather nonspecific label "angiodysgenetic necrotizing encephalopathy" is still commonly used.
Resumo:
Tenascins are extracellular matrix glycoproteins associated with cell motility, proliferation and differentiation. Tenascin-C inhibits cell spreading by binding to fibronectin; tenascin-R and tenascin-X also have anti-adhesive properties in vitro. Here we have studied the adhesion modulating properties of the most recently characterized tenascin, tenascin-W. C2C12 cells, a murine myoblast cell line, will form broad lamellipodia with stress fibers and focal adhesion complexes after culture on fibronectin. In contrast, C2C12 cells cultured on tenascin-W fail to spread and form stress fibers or focal adhesion complexes, and instead acquire a multipolar shape with short, actin-tipped pseudopodia. The same stellate morphology is observed when C2C12 cells are cultured on a mixture of fibronectin and tenascin-W, or on fibronectin in the presence of soluble tenascin-W. Tenascin-W combined with fibronectin also inhibits the spreading of mouse embryo fibroblasts when compared with cells cultured on fibronectin alone. The similarity between the adhesion modulating effects of tenascin-W and tenascin-C in vitro led us to study the possibility of tenascin-W compensating for tenascin-C in tenascin-C knockout mice, especially during epidermal wound healing. Dermal fibroblasts harvested from a tenascin-C knockout mouse express tenascin-W, but dermal fibroblasts taken from a wild type mouse do not. However, there is no upregulation of tenascin-W in the dermis of tenascin-C knockout mice, or in the granulation tissue of skin wounds in tenascin-C knockout animals. Similarly, tenascin-X is not upregulated in early wound granulation tissue in the tenascin-C knockout mice. Thus, tenascin-W is able to inhibit cell spreading in vitro and it is upregulated in dermal fibroblasts taken from the tenascin-C knockout mouse, but neither it nor tenascin-X are likely to compensate for missing tenascin-C during wound healing.