999 resultados para Antineoplasic activity elicitation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ternary copper(II) complex Cu(a-lipo)(phen)(Cl)](NO3) where a-lipo = a-lipoic acid, phen is N, N-donor heterocyclic base, 1,10-phenanthroline was synthesized, characterized, and its DNA binding and cleavage activity were studied. Binding interactions of the complex with calf thymus (CT) DNA has been investigated by emission, viscosity, and DNA melting studies. The complex shows efficient oxidative cleavage of SC-DNA in the presence of 3-mercaptopropionic acid involving hydroxyl radical species, and results of control experiments exhibit the inhibition of DNA cleavage in the presence of hydroxyl radical scavengers, viz. DMSO and KI.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Supported catalysts containing 15 wt.% of molybdenum have been prepared by the incipient wetness impregnation method. CaO, MgO, Al2O3, Zr(OH)4 and Al(OH)3 have been used as supports for the preparation of supported Mo catalysts. Characterisation of all the materials prepared has been carried out through BET surface area measurement, X-ray diffractometry and FT-IR spectroscopy. Catalytic activity measurements have been carried out with reference to structure-sensitive benzyl alcohol conversion in the liquid phase. The percentage conversion of benzyl alcohol to benzaldehyde and toluene varied over a large range depending on the support used for the preparation of catalysts, indicating the importance of the support on catalytic activity of Mo catalysts. Al(OH)3 has been found to be the best support for molybdenum among all the supports used. Support–metal interaction (SMI) has been found to play an important role in determining the catalytic activity of supported catalysts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Earthquakes triggered by artificial reservoirs have been documented for more than seven decades and the processes leading to this phenomenon are fairly well understood. Larger among such earthquakes are known to occur within a few years of reservoir impoundment and usually the activity decreases with time. A documented example of Reservoir Triggered Seismicity (RTS), the Idukki Reservoir in Kerala, south India, impounded in 1975, is an exception wherein the triggered activity has been revived in 2011, nearly 35 years after the initial burst of activity in 1977, two years after the dam was filled. The magnitude of the largest shock in the 2011 sequence exceeded that of the previously documented largest microearthquake. Presence of faults that are close to failure and vulnerable to increase in pore pressure due to reservoir loading or increased rainfall, or a combination of both seems to trigger shocks in this area. The renewed burst of earthquakes after a prolonged period of reduced activity at the Idukki Reservoir is a rare example of RTS. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Theoretical and computational frameworks for synaptic plasticity and learning have a long and cherished history, with few parallels within the well-established literature for plasticity of voltage-gated ion channels. In this study, we derive rules for plasticity in the hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, and assess the synergy between synaptic and HCN channel plasticity in establishing stability during synaptic learning. To do this, we employ a conductance-based model for the hippocampal pyramidal neuron, and incorporate synaptic plasticity through the well-established Bienenstock-Cooper-Munro (BCM)-like rule for synaptic plasticity, wherein the direction and strength of the plasticity is dependent on the concentration of calcium influx. Under this framework, we derive a rule for HCN channel plasticity to establish homeostasis in synaptically-driven firing rate, and incorporate such plasticity into our model. In demonstrating that this rule for HCN channel plasticity helps maintain firing rate homeostasis after bidirectional synaptic plasticity, we observe a linear relationship between synaptic plasticity and HCN channel plasticity for maintaining firing rate homeostasis. Motivated by this linear relationship, we derive a calcium-dependent rule for HCN-channel plasticity, and demonstrate that firing rate homeostasis is maintained in the face of synaptic plasticity when moderate and high levels of cytosolic calcium influx induced depression and potentiation of the HCN-channel conductance, respectively. Additionally, we show that such synergy between synaptic and HCN-channel plasticity enhances the stability of synaptic learning through metaplasticity in the BCM-like synaptic plasticity profile. Finally, we demonstrate that the synergistic interaction between synaptic and HCN-channel plasticity preserves robustness of information transfer across the neuron under a rate-coding schema. Our results establish specific physiological roles for experimentally observed plasticity in HCN channels accompanying synaptic plasticity in hippocampal neurons, and uncover potential links between HCN-channel plasticity and calcium influx, dynamic gain control and stable synaptic learning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neutral and cationic copper bis(thiosemicarbazone) complexes bearing methyl, phenyl, and hydrogen, on the diketo-backbone of the ligand have been synthesized. All of them were characterized by spectroscopic methods and in three cases by X-ray crystallography. In vitro cytotoxicity studies revealed that they are cytotoxic unlike the corresponding zinc complexes. Copper complexes Cu(GTSC) and Cu(GTSCHCl) derived from glyoxal-bis(4-methyl-4-phenyl-3-thiosemicarbazone) (GTSCH(2)) are the most cytotoxic complexes against various human cancer cell lines, with a potency similar to that of the anticancer drug adriamycin and up to 1000 fold higher than that of the corresponding zinc complex. Tritiated thymidine incorporation assay revealed that Cu(GTSC) and Cu(GTSCHCl) inhibit DNA synthesis substantially. Cell cycle analyses showed that Cu(GTSC) and Cu(GTSCHCl) induce apoptosis in HCT116 cells. The Cu(GTSCHCl) complex caused distinct DNA cleavage and Topo II alpha inhibition unlike that for Cu(GTSC). In vivo administration of Cu(GTSC) significantly inhibits tumor growth in HCT116 xenografts in nude mice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The natural product fumagillin exhibits potent antiproliferative and antiangiogenic properties. The semisynthetic analog PPI-2458, (3R,4S,5S,6R)-5-methoxy-4-(2R,3R)-2-methyl-3-(3-methylbut-2-enyl) oxiran-2-yl]-1-oxaspiro2.5]octan-6-yl] N-(2R)-1-amino-3-methyl-1-oxobutan-2-yl]carbamate, demonstrates rapid inactivation of its molecular target, methionine aminopeptidase-2 (MetAP2), and good efficacy in several rodent models of cancer and inflammation with oral dosing despite low apparent oral bioavailability. To probe the basis of its in vivo efficacy, the metabolism of PPI-2458 was studied in detail. Reaction phenotyping identified CYP3A4/5 as the major source of metabolism in humans. Six metabolites were isolated from liver microsomes and characterized by mass spectrometry and nuclear resonance spectroscopy, and their structures were confirmed by chemical synthesis. The synthetic metabolites showed correlated inhibition of MetAP2 enzymatic activity and vascular endothelial cell growth. In an ex vivo experiment, MetAP2 inhibition in white blood cells, thymus, and lymph nodes in rats after single dosing with PPI-2458 and the isolated metabolites was found to correlate with the in vitro activity of the individual species. In a phase 1 clinical study, PPI-2458 was administered to patients with non-Hodgkin lymphoma. At 15 mg administered orally every other day, MetAP2 in whole blood was 80% inactivated for up to 48 hours, although the exposure of the parent compound was only similar to 10% that of the summed cytochrome P450 metabolites. Taken together, the data confirm the participation of active metabolites in the in vivo efficacy of PPI-2458. The structures define a metabolic pathway for PPI-2458 that is distinct from that of TNP-470 ((3R, 4S, 5S, 6R)-5-methoxy-4-(2R, 3R)-2-methyl-3-(3-methylbut-2-enyl)oxiran-2-yl]-1-oxaspiro2.5]octan-6 -yl] N-(2-chloroacetyl)carbamate). The high level of MetAP2 inhibition achieved in vivo supports the value of fumagillin-derived therapeutics for angiogenic diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Four novel mononuclear Pd(II) complexes have been synthesized with the biologically active Schiff base ligands (L-1-L-4) derived from 3-amino-2-methyl-4(3H)-quinazolinone. The structure of the complexes has been proposed by elemental analysis, molar conductance, IR, H-1 NMR, mass, UV-Vis spectrometric and thermal studies. The investigation of interaction of the complexes with calf thymus DNA (CT-DNA) has been performed with absorption and fluorescence spectroscopic studies. The nuclease activity was done using pUC19 supercoiled DNA by gel-electrophoresis. All the ligands and their Pd(II) complexes have also been screened for their antibacterial activity by discolor diffusion technique. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The relative levels of different sigma factors dictate the expression profile of a bacterium. Extracytoplasmic function sigma factors synchronize the transcriptional profile with environmental conditions. The cellular concentration of free extracytoplasmic function sigma factors is regulated by the localization of this protein in a sigma/anti-sigma complex. Anti-sigma factors are multi-domain proteins with a receptor to sense environmental stimuli and a conserved anti-sigma domain (ASD) that binds a sigma factor. Here we describe the structure of Mycobacterium tuberculosis anti-sigma(D) (RsdA) in complex with the -35 promoter binding domain of sigma(D) (sigma(D)(4)). We note distinct conformational features that enable the release of sigma(D) by the selective proteolysis of the ASD in RsdA. The structural and biochemical features of the sigma(D)/RsdA complex provide a basis to reconcile diverse regulatory mechanisms that govern sigma/anti-sigma interactions despite high overall structural similarity. Multiple regulatory mechanisms embedded in an ASD scaffold thus provide an elegant route to rapidly re-engineer the expression profile of a bacterium in response to an environmental stimulus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxovanadi um(IV) complexes VO(Fc-pic)(acac)](ClO4) (1), VO(Fc-pic)(cur)](ClO4) (2), VO(Ph-pic)(acac)](ClO4) (3) and VO(Ph-pic)(cur)](ClO4) (4), where Fc-pic and Ph-pic are ferrocenylmethyl-bis-(2-pyridylmethylamine) (in 1, 2) and bis-(2-pyridylmethyl)benzylamine (in 3, 4), respectively, acac is acetylacetonate anion (in 1, 3) and cur is curcumin anion (in 2, 4) were prepared, characterized and their photo-induced DNA cleavage and anticancer activity studied. The crystal structure of 1 as its PF6 salt (1a) shows the presence of a VO2+ moiety in VO3N3 coordination geometry. The complexes show a d-d band at similar to 790 nm in DMF and display V(IV)/V(III) redox couple near -1.45 V vs. SCE in DMF-0.1 M TBAP. The complexes are avid binders to calf thymus DNA. Complex 2 efficiently photo-cleaves plasmid DNA in near-IR light of 785 nm forming (OH)-O-center dot radicals. The curcumin complexes show photocytotoxicity in HeLa cancer cells in visible light of 400-700 nm with significant cellular uptake within 4 h of incubation time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanosized Ce0.85M0.1Ru0.05O2-delta (M = Si, Fe) has been synthesized using a low temperature sonication method and characterized using XRD, TEM, XPS and H-2-TPR. The potential application of both the solid solutions has been explored as exhaust catalysts by performing CO oxidation. The addition of Si- and Fe-in Ce0.95Ru0.05O2-delta greatly enhanced the reducibility of Ce0.85M0.1Ru0.05O2-delta (M = Si, Fe), as indicated by the H-2-TPR study. The oxygen storage capacity has been used to correlate surface oxygen reactivity to the CO oxidation activity. Both the compounds reversibly release lattice oxygen and exhibit excellent CO oxidation activity with 99% conversion below 200 degrees C. A bifunctional reaction mechanism involving CO oxidation by the extraction of lattice oxygen and rejuvenation of oxide vacancy with gas feed O-2 has been used to correlate experimental data. The performance of both the solid solutions has also been investigated for energy application by performing the water gas shift reaction. The present catalysts are highly active and selective towards the hydrogen production and a lack of methanation activity is an important finding of present study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Titanium carbide (TiC) possesses fascinating properties like high electrical conductivity and high mechanical strength coupled with high corrosion resistance and stability in acidic and alkaline environments. The present study demonstrates the tunability of mechanistic aspects of oxygen reduction reaction (ORR) using TiC nanostructures. One dimensional TiC nanostructures (TiC-NW) have been synthesized using a simple, hydrothermal method and used as a catalyst for ORR. Shape dependent electroactivity is demonstrated by comparing the activity of TiC-NW with its bulk counterparts. Comparative studies reveal higher ORR activities in the case of 1D TiC-NW involving similar to 4 electrons showing efficient reduction of molecular oxygen. Excellent stability and high methanol tolerance with good selectivity for ORR is reported.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

FadD32, a fatty acyl-AMP ligase (FAAL32) involved in the biosynthesis of mycolic acids, major and specific lipid components of the mycobacterial cell envelope, is essential for the survival of Mycobacterium tuberculosis, the causative agent of tuberculosis. The protein catalyzes the conversion of fatty acid to acyl-adenylate (acyl-AMP) in the presence of adenosine triphosphate and is conserved in all the mycobacterial species sequenced so far, thus representing a promising target for the development of novel antituberculous drugs. Here, we describe the optimization of the protein purification procedure and the development of a high-throughput screening assay for FadD32 activity. This spectrophotometric assay measuring the release of inorganic phosphate was optimized using the Mycobacterium smegmatis FadD32 as a surrogate enzyme. We describe the use of Tm (melting temperature) shift assay, which measures the modulation of FadD32 thermal stability, as a tool for the identification of potential ligands and for validation of compounds as inhibitors. Screening of a selected library of compounds led to the identification of five novel classes of inhibitors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interconnected Os nanochains consisting of ultrafine particles prepared using a simple procedure yield a coupled surface plasmon peak in the visible region and can be used as substrates for surface enhanced Raman scattering of various analytes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Faceted ZnO nanorods with different aspect ratios were synthesized by a solvothermal method by tuning the reaction time. Increased reaction leads to the formation of high aspect ratio ZnO nanorods largely bound by the prism planes. The high aspect ratio rods showed significantly higher visible light photocatalytic activity when compared to the lower aspect ratio structures. It is proposed that the higher activity is due to better charge separation in the elongated 1D structure. In addition, the fraction of unsaturated Zn2+ sites is higher on the {10 (1) over bar0} facets, leading to better adsorption of oxygen-containing species. These species enhance the production of reactive radicals that are responsible for photodegradation. The photocurrent for these ZnO nanostructures under solar light was measured and a direct correlation between photocurrent and aspect ratio was observed. Since the underlying mechanisms for photodegradation and photocurrent generation are directly related to the efficiency of electron-hole creation and separation, this observation corroborates that the charge separation processes are indeed enhanced in the high aspect ratio structures. The efficiency of photoconduction (electron-hole pair separation) could be further improved by attaching Au nanoparticles on ZnO, which can act as a sink for the electrons. This heterostructure exhibits a high chemisorption of oxygen, which facilitates the production of highly reactive radicals contributing to the high photoreactivity. The suggested mechanisms are applicable to other n-type semiconductor nanostructures with important implications for applications relating to energy and the environment.