934 resultados para Pancreatic Function Tests


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this brief, we present a new circuit technique to generate the sigmoid neuron activation function (NAF) and its derivative (DNAF). The circuit makes use of transistor asymmetry in cross-coupled differential pair to obtain the derivative. The asymmetry is introduced through external control signal, as and when required. This results in the efficient utilization of the hard-ware by realizing NAF and DNAF using the same building blocks. The operation of the circuit is presented in the subthreshold region for ultra low-power applications. The proposed circuit has been experimentally prototyped and characterized as a proof of concept on the 1.5-mum AMI technology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interactions of lipid A and lipopolysaccharide (LPS) with human serum albumin (HSA) were examined using fluorescence methods. Lipid A binds HSA with a stoichiometry of 2:1 with dissociation constants of 1.0 µM and 6.0 µM for the high- and low-affinity interactions, respectively. Lipid A displaces HSA-bound dansylsarcosine competitively, but not HSA-bound warfarin, suggesting that domain III-A, and not domain 11-A, is a lipid A binding site. Domain I does not contribute a site for lipid A. Based on these data, and the structural similarity between subdomains III-A and III-B, it is proposed that these two regions of HSA represent the high- and low-affinity sites of interaction of lipid A. Whole LPS also binds HSA, displacing dansylsarcosine, and its lipid A moiety appears to be the interaction site. However, there are differences between LPS and free lipid A. Polymyxin B forms ternary complexes with LPS bound to HSA, suggesting that the regions on LPS recognized by HSA and polymyxin B are different. The observed affinity of lipid A for HSA and mass action effects due to its abundance in the circulation would imply a major LPS carrier function for HSA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Serine hydroxymethyltransferase (SHMT) belongs to the alpha-family of pyridoxal 5'-phosphate-dependent enzymes and catalyzes the reversible conversion of L-Ser and etrahydrofolate to Gly and 5,10-methylene tetrahydrofolate. 5,10-Methylene tetrahydrofolate serves as a source of one-carbon fragment in many biological processes. SHMT also catalyzes the tetrahydrofolate-independent conversion of L-allo-Thr to Gly and acetaldehyde. The crystal structure of Bacillus stearothermophilus SHMT (bsSHMT) suggested that E53 interacts with the substrate, L-Ser and etrahydrofolate. To elucidate the role of E53, it was mutated to Q and structural and biochemical studies were carried out with the mutant enzyme. The internal aldimine structure of E53QbsSHMT was similar to that of the except for significant changes at Q53, Y60 and Y61. The wild-type enzyme, carboxyl of Gly and side chain of L-Ser were in two conformations in the respective external aldimine structures. The mutant enzyme was completely inactive for tetrahydrofolate-depen dent cleavage of L-Ser, whereas there was a 1.5-fold increase in the rate of tetrahydrofolate-independent reaction with L-allo-Thr. The results obtained from these studies suggest that E53 plays an essential role in tetrahydrofolate/5-formyl tetrahydrofolate binding and in the proper positioning of C beta of L-Ser for direct attack by N5 of tetrahydrofolate. Most interestingly, the structure of the complex obtained by cocrystallization of E53QbsSHMT with Gly and 5-formyl tetrahydrofolate revealed the gem-diamine form of pyridoxal 5'-phosphate bound to Gly and active site Lys. However, density for 5-formyl tetrahydrofolate was not observed. Gly carboxylate was in a single conformation, whereas pyridoxal 5'-phosphate had two distinct conformations. The differences between the structures of this complex and Gly external aldimine suggest that the changes induced by initial binding of 5-formyl tetrahydrofolate are retained even though 5-formyl tetrahydrofolate is absent in the final structure. Spectral studies carried out with this mutant enzyme also suggest that 5-formyl tetrahydrofolate binds to the E53QbsSHMT-Gly complex forming a quinonoid intermediate and falls off within 4 h of dialysis, leaving behind the mutant enzyme in the gemdiamine form. This is the first report to provide direct evidence for enzyme memory based on the crystal structure of enzyme complexes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The process cascade leading to the final accommodation of the carbohydrate ligand in the lectin’s binding site comprises enthalpic and entropic contributions of the binding partners and solvent molecules. With emphasis on lactose, N-acetyllactosamine, and thiodigalactoside as potent inhibitors of binding of galactoside-specific lectins, the question was addressed to what extent these parameters are affected as a function of the protein. The microcalorimetric study of carbohydrate association to the galectin from chicken liver (CG-16) and the agglutinin from Viscum album (VAA) revealed enthalpy–entropy compensation with evident protein type-dependent changes for N-acetyllactosamine. Reduction of the entropic penalty by differential flexibility of loops or side chains and/or solvation properties of the protein will have to be reckoned with to assign a molecular cause to protein type-dependent changes in thermodynamic parameters for lectins sharing the same monosaccharide specificity.