968 resultados para FTIR spectroscopy


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new, flexible, gas barrier material has been synthesized by exfoliating organically modified nano-clays (MMT) in the blends of Surlyn (PEMA) using a copolymer of vinyl alcohol (EVOH) and demonstrated as a gas barrier material. The materials were characterized by Fourier transform infra red (FTIR) and UV-visible spectroscopy, differential scanning calorimetry (DSC), thermo-gravimetric analysis (TGA) and tensile studies. The oxygen and water-vapor permeabilities of the fabricated films were determined by calcium degradation test and a novel permeability setup based on cavity ring down spectroscopy, respectively. Hierarchical simulations of these materials helped us to understand the effect of intermolecular interactions on diffusivities of oxygen and water molecules in these materials. Schottky structured poly(3-hexylthiophene) based organic devices were encapsulated with the fabricated films and aging studies were carried under accelerated conditions. Based on permeability test results and accelerated aging studies, the fabricated PEMA/EVOH/MMT composites were found to be effective in decreasing the permeabilities for gases by about two orders of magnitude and maintaining the lifetime of organic devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CaTiO3:Sm3+ (1-11 mol%) nanophosphors were successfully synthesized by a low temperature solution combustion method LCS]. The structural and morphological properties of the phosphors were studied by using Powder X-ray diffractometer (PXRD), Fourier transform infrared (FTIR), X-ray photo electron spectroscopy (XPS), scanning electron microscope (SEM) and transmission electron microscopy (TEM). TEM studies indicate that the size of the phosphor is similar to 20-35 nm. Photoluminescence (PL) properties of Sm3+ (1-11 mol%) doped CaTiO3 for NUV excitation (407 nm) was studied in order to investigate the possibility of its use in White light emitting diode (WLED) applications. The emission spectra consists of intra 4f transitions of Sm3+, such as (4)G(5/2) -> H-6(5/2) (561 nm), (4)G(5/2) -> H-6(7/2) (601-611 nm), (4)G(5/2) -> H-6(9/2) (648 nm) and (4)G(5/2) -> H-6(11/2) (703 nm) respectively. Further, the emission at 601-611 nm show strong orange-red emission and can be applied to the orange-red emission of phosphor for the application for near ultra violet (NUV) excitation. Thermoluminescence (TL) of the samples irradiated with gamma source in the dose range 100-500 Gy was recorded at a heating rate of 5 degrees C s(-1). Two well resolved glow peaks at 164 degrees C and 214 degrees C along with shouldered peak at 186 degrees C were recorded. TL intensity increases up to 300 Gy and thereafter, it decreases with further increase of dose. The kinetic parameters namely activation energy (E), frequency factor (s) and order of kinetics were estimated and results were discussed in detail. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Non-invasive 3D imaging in materials and medical research involves methodologies such as X-ray imaging, MRI, fluorescence and optical coherence tomography, NIR absorption imaging, etc., providing global morphological/density/absorption changes of the hidden components. However, molecular information of such buried materials has been elusive. In this article we demonstrate observation of molecular structural information of materials hidden/buried in depth using Raman scattering. Typically, Raman spectroscopic observations are made at fixed collection angles, such as, 906, 1356, and 1806, except in spatially offset Raman scattering (SORS) (only back scattering based collection of photons) and transmission techniques. Such specific collection angles restrict the observations of Raman signals either from or near the surface of the materials. Universal Multiple Angle Raman Spectroscopy (UMARS) presented here employs the principle of (a) penetration depth of photons and then diffuse propagation through non-absorbing media by multiple scattering and (b) detection of signals from all the observable angles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rheology of a poly(alpha-olefin) base oil (PAO) in a sliding point contact has been investigated by total internal reflection (TIR) Raman spectroscopy. TIR Raman has the sensitivity to analyse nanometer-thick lubricant films in a tribological contact. The Raman signal generated from the sliding contact was used to determine the lubricant film thickness. The experimentally obtained film thicknesses were compared with theoretical calculations and a transition from Newtonian to non-Newtonian behaviour was observed at high shear rates. The Raman spectra showed no significant changes in the conformation of the PAO chains under the applied conditions of pressure and shear, but the polarisation dependence of the spectra revealed a preferred orientation of the hydrocarbon side chains in the shear-thinned region. Monolayers formed by a boundary lubricant, arachidic acid, dissolved in the PAO could be detected on the surfaces in the elastohydrodynamic regime.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

GX 301-2, a bright high-mass X-ray binary with an orbital period of 41.5 d, exhibits stable periodic orbital intensity modulations with a strong pre-periastron X-ray flare. Several models have been proposed to explain the accretion at different orbital phases, invoking accretion via stellar wind, equatorial disc, and accretion stream from the companion star. We present results from exhaustive orbital phase resolved spectroscopic measurements of GX 301-2 using data from the Gas Slit Camera onboard MAXI. Using spectroscopic analysis of the MAXI data with unprecedented orbital coverage for many orbits continuously, we have found a strong orbital dependence of the absorption column density and equivalent width of the iron emission line. A very large equivalent width of the iron line along with a small value of the column density in the orbital phase range 0.10-0.30 after the periastron passage indicates the presence of high density absorbing matter behind the neutron star in this orbital phase range. A low energy excess is also found in the spectrum at orbital phases around the pre-periastron X-ray flare. The orbital dependence of these parameters are then used to examine the various models about mode of accretion on to the neutron star in GX 301-2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article describes the determination of the internal structure of heterogeneous nanoparticle systems including inverted core-shell (CdS core and CdSe shell) and alloyed (CdSeS) quantum dots using depth-resolved, variable-energy X-ray photoelectron spectroscopy (XPS). A unique feature of this work is the combination of photoelectron spectroscopy performed at lower X-ray energies (400-700 eV), to achieve surface sensitivity, with bulk sensitive measurements at high photon energies (>2000 eV), thereby providing detailed information about the whole nanoparticle structure with a great accuracy. The use of high photon energies furthermore allows us to investigate nanoparticles much larger than those studied thus far. This capability is a consequence of the much-increased mean free path of the photoelectron achieved at high excitation energies. Our results show that the actual structures of the synthesized nanoparticles are considerably different from the nominal, targeted structures, which can be post facto rationalized in terms of the reactivity of different constituents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate diffusing-wave spectroscopy (DWS) in a localized region of a viscoelastically inhomogeneous object by measurement of the intensity autocorrelation g(2)(tau)] that captures only the decay introduced by the temperature-induced Brownian motion in the region. The region is roughly specified by the focal volume of an ultrasound transducer which introduces region specific mechanical vibration owing to insonification. Essential characteristics of the localized non-Markovian dynamics are contained in the decay of the modulation depth M(tau)], introduced by the ultrasound forcing in the focal volume selected, on g(2)(tau). The modulation depth M(tau(i)) at any delay time tau(i) can be measured by short-time Fourier transform of g(2)(tau) and measurement of the magnitude of the spectrum at the ultrasound drive frequency. By following the established theoretical framework of DWS, we are able to connect the decay in M(tau) to the mean-squared displacement (MSD) of scattering centers and the MSD to G*(omega), the complex viscoelastic spectrum. A two-region composite polyvinyl alcohol phantom with different viscoelastic properties is selected for demonstrating local DWS-based recovery of G*(omega) corresponding to these regions from the measured region specific M(tau(i))vs tau(i). The ultrasound-assisted measurement of MSD is verified by simulating, using a generalized Langevin equation (GLE), the dynamics of the particles in the region selected as well as by the usual DWS experiment without the ultrasound. It is shown that whereas the MSD obtained by solving the GLE without the ultrasound forcing agreed with its experimental counterpart covering small and large values of tau, the match was good only in the initial transients in regard to experimental measurements with ultrasound.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We are reporting the fabrication, characterizations and supercapacitance performance of benzimidazole-grafted graphene oxide/multi-walled carbon nanotubes (BI-GO/MWCNTs) composite. The synthesis of BI-GO materials involves cyclization reaction of carboxylic groups on GO among the hydroxyl and amino groups on o-phenylenediamine. The BI-GO/MWCNTs composite has been fabricated via in situ reduction of BI-GO using hydrazine in presence of MWCNTs. Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Raman spectroscopy, X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) have been used to characterize its surface and elemental composition. The uniform dispersion of MWCNTs with BI-GO helps to improve the charge transfer reaction during electrochemical process. The specific capacitance of BI-GO/MWCNTs composite is 275 and 460 F/g at 200 and 5 mV/s scan rate in 1 mol/L aqueous solution of H2SO4. This BI-GO/MWCNTs composite has shown 224 F/g capacitance after 1300 cycles at 200 mV/s scan rate, which represents its good electrochemical stability. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fe0.05Co0.95Sb2.875Te0.125, a double-element-substituted skutterudite, was prepared by induction melting, annealing, and hot pressing (HP). The hot-pressed sample was subjected to high-pressure torsion (HPT) with 4 GPa pressure at 673 K. X-ray diffraction was performed before and after HPT processing of the sample; the skutterudite phase was observed as a main phase, but an additional impurity phase (CoSb2) was observed in the HPT-processed sample. Surface morphology was determined by high-resolution scanning electron microscopy. In the HP sample, coarse grains with sizes in the range of approximately 100 nm to 300 nm were obtained. They changed to fine grains with a reduction in grain size to 75 nm to 125 nm after HPT due to severe plastic deformation. Crystallographic texture, as measured by x-ray diffraction, indicated strengthening of (112), (102) poles and weakening of the (123) pole of the HPT-processed sample. Raman-active vibrational modes showed a peak position shift towards the lower energy side, indicating softening of the modes after HPT. The distortion of the rectangular Sb-Sb rings leads to broadening of Sb-Sb vibrational modes due to local strain fluctuation. In the HPT process, a significant effect on the shorter Sb-Sb bond was observed as compared with the longer Sb-Sb bond.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A systematic study of Raman spectra on Yttrium doped NdMnO3 polycrystalline samples was undertaken to understand the lattice dynamics in this compound. Raman active phonons were analyzed and the observed peak were assigned to elucidate various phonon modes in the range (200 - 800) cm(-1). It was observed that at 325 cm(-1) phonon frequency shifts upward as much as upto 4 % with increase in Yttrium content. Lattice distortions manifest themselves by frequency shifts in both bending and tilt modes of MnO6 octahedra, resulting in increase of Raman band line-widths.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optical-pump terahertz-probe differential transmission measurements of as-prepared single layer graphene (AG) (unintentionally hole dopedwith Fermi energy E-F at similar to -180 meV), nitrogen doping compensated graphene (NDG) with E-F similar to -10 meV, and thermally annealed doped graphene (TAG) are examined quantitatively to understand the opposite signs of photoinduced dynamic terahertz conductivity Delta sigma. It is negative for AG and TAG but positive for NDG. We show that the recently proposed mechanism of multiple generations of secondary hot carriers due to Coulomb interaction of photoexcited carriers with the existing carriers together with the intraband scattering can explain the change of photoinduced conductivity sign and its magnitude. We give a quantitative estimate of Delta sigma in terms of controlling parameters-the Fermi energy E-F and momentum relaxation time tau. Furthermore, the cooling of photoexcited carriers is analyzed using a supercollision model which involves a defect mediated collision of the hot carriers with the acoustic phonons, thus giving an estimate of the deformation potential.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structural relaxations in PVDF rich blends with PMMA can be quite interesting in understanding the origin of the different molecular relaxations associated with the crystalline and amorphous phases, crystal-amorphous interphase and the segmental motions. In light of our recent findings, we understood that the origin of these molecular relaxations were strongly contingent on the concentration of PMMA in the blend, crystalline morphology and the surface functional moieties on multiwall carbon nanotubes (CNTs). In addition, for the blends with concentration of PMMA >= 25 wt%, the structural relaxations often merge and are dielectrically indistinguishable. In this study, we attempted to determine the critical width in composition where the structural relaxations can be distinctly realized both in the control as well as blends with amine functionalized CNTs (NH2-CNTs). Intriguingly, we observed that in a narrow zone in composition (with PMMA concentration >= 10 wt% and <= 25 wt%), the molecular relaxations can be dielectrically distinguished and they often merge for all other compositions. Furthermore, we attempted to understand how this critical width in composition is related to the crystalline morphology using small angle X-ray scattering and polarizing optical microscopy and the crystal structure using FTIR and Raman spectroscopy. We now understand that although the formation of beta crystals in the blends has no direct correlation with the observed molecular relaxations, the amorphous miscibility and the interphase regions seem to be dictating the origin of different molecular relaxations in the blends. The latter was observed to be strongly contingent on the concentration of PMMA in the blends.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The catalytic performance of metals can be enhanced by intimately alloying different metals with Reduced Graphene Oxide (RGO). In this work, we have demonstrated a simplistic in situ one-step reduction approach for the synthesis of RGO/Pt-Ni nanocatalysts with different atomic ratios of Pt and Ni, without using any capping agent. The physical properties of the as-synthesized nanocatalysts have been systematically investigated by XRD, FTIR, Raman spectroscopy, XPS, EDX, ICP-AES, and TEM. The composition dependent magnetic properties of the RGO/Pt-Ni nanocatalysts were investigated at 5 and 300 K, respectively. The results confirm that the RGO/Pt-Ni nanocatalysts show a super-paramagnetic nature at room temperature in all compositions. Furthermore, the catalytic activities of the RGO/Pt-Ni nanocatalysts were investigated by analyzing the reduction of p-nitrophenol, and the reduction rate was found to be susceptible to the composition of Pt and Ni. Moreover, it has been found that RGO/Pt-Ni nanocatalysts show superior catalytic activity compared with the bare Pt-Ni of the same composition. Interestingly, the nanocatalysts can be readily recycled by a strong magnet and reused for the next reactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Towards ultrafast optoelectronic applications of single and a few layer reduced graphene oxide (RGO), we study time domain terahertz spectroscopy and optical pump induced changes in terahertz conductivity of self-supported RGO membrane in the spectral window of 0.5-3.5 THz. The real and imaginary parts of conductivity spectra clearly reveal low frequency resonances, attributed to the energy gaps due to the van Hove singularities in the density of states flanking the Dirac points arising due to the relative rotation of the graphene layers. Further, optical pump induced terahertz conductivity is positive, pointing to the dominance of intraband scattering processes. The relaxation dynamics of the photo-excited carriers consists of three cooling pathways: the faster (similar to 450 fs) one due to optical phonon emission followed by disorder mediated large momentum and large energy acoustic phonon emission with a time constant of a few ps (called the super-collision mechanism) and a very large time (similar to 100 ps) arising from the deep trap states. The frequency dependence of the dynamic conductivity at different delay times is analyzed in term of Drude-Smith model. (C) 2014 Published by Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Zinc oxide (ZnO) and silver doped zinc oxide (ZnO:Ag) nanoparticles were prepared using nitrates of zinc and silver as oxidizers and ethylene diaminetetraacetic acid (EDTA) as a fuel via low-temperature combustion synthesis (LCS) at 500 degrees C. X-ray diffraction (XRD) pattern indicates the presence of silver in the hexagonal wurtzite structure of ZnO. Fourier transform infrared (FTIR) spectrum indicates the presence of Ag-Zn-O stretching vibration at 510 cm(-1). Transmission electron microscopy (TEM) images shows that the average particle size of ZnO and ZnO:Ag nanoparticles were found to be 58 nm and 52 nm, respectively. X-ray photoelectron spectroscopy (XPS) data clearly indicates the presence of Ag in ZnO crystal lattice. The above characterization techniques indicate that the incorporation of silver affects the structural and optical properties of ZnO nanoparticles. ZnO:Ag nanoparticles exhibited 3% higher photocatalytic efficiency than pure ZnO nanoparticles. ZnO:Ag nanoparticles show better photocatalytic activity for the degradation of trypan blue (TrB) compared to undoped ZnO nanoparticles. (C) 2014 Elsevier Ltd. All rights reserved.