938 resultados para antioxidant


Relevância:

10.00% 10.00%

Publicador:

Resumo:

近年来,随着对作物重茬(连年种植)障碍原因的深入研究,植物的化感作用越来越受到国内外众多学者的重视。而作为重要调料和药用植物的生姜,其连作障碍也备受关注,系统地研究生姜化感作用将有助于理解和最终解决生姜连作障碍问题。本文通过研究生姜不同部位、不同浓度的水浸液对与其间作的两个物种(大豆和四季葱)种子的萌发及幼苗生长的影响,从而证明生姜化感作用的存在;并通过温室盆栽实验研究了生姜的自毒作用(即研究生姜不同部位、不同浓度的水浸液对其幼苗的形态、生理生化、光合作用、土壤酶、土壤微生物多样性及土壤养分的影响),从而揭示生姜退化和衰老的机制,并为生姜筛选出合适的间作物种提供科学依据,对生姜连作障碍提出科学的解决方法。主要研究结果如下: 1. 与对照相比,生姜所有部位(根茎、茎、叶)、所有浓度(10、20、40、 80 g l-1)的水浸液均抑制了大豆种子和葱籽的萌发率、幼苗生长、水分吸收和脂肪酶活性,并且其抑制程度随着水浸液浓度的增加而增强,其生姜各部位水浸液抑制效应的强弱顺序为茎>叶>根茎。这一结果表明生姜根茎、茎、叶含有能够抑制大豆种子和葱籽种子萌发和幼苗生长的水溶性化感物质。根茎是生姜的主要收获部位,而生姜的残株(主要是茎和叶)应该从大田中处理掉以减轻其抑制效应。生姜水浸液中主要化感成分包括:根茎水浸液中主要是丁香酸和伞花内脂;茎水浸液中主要是阿魏酸,且其含量最高为73.4 ug/g;叶水浸液中除了阿魏酸,其他六种物质均检测出来,但含量较高的主要有丁香酸、伞花内脂和香豆酸。 2. 生姜茎和叶不同浓度的水浸液均显著抑制了生姜幼苗的株高、每株叶片数和叶面积,其抑制程度随着水浸液浓度的增加而有所增强,而生姜幼苗每株分枝数差异不显著;同时生姜水浸液也极大程度地影响了生姜幼苗的生物量(包括地下生物量、地上生物量和总生物量,均为鲜重)。在同一浓度下,茎水浸液对生姜幼苗形态指标及生物量指标均显示出最强的抑制作用,叶水浸液次之,根茎水浸液最弱。与对照相比,低浓度的生姜根茎水浸液提高了生姜幼苗叶片内四种抗氧化酶(SOD、POD、CAT、APX)活性,高浓度的根茎水浸液抑制了四种抗氧化酶活性,而茎和叶水浸液均随着浓度的增加而抑制了四种抗氧化酶活性,三种水浸液均随着浓度的增加降低了生姜幼苗叶片内叶绿素的含量,而增加了生姜幼苗叶片的相对电导率和丙二醛含量。同时,三种水浸液均随着浓度的增加降低了生姜幼苗的光合参数(包括胞间CO2浓度、气孔导度、蒸腾速率及净光合速率)。 3. 三种生姜水浸液对所测六种土壤酶活性均产生了不同程度的影响,其中影响最大的是酸性磷酸酶和蔗糖酶,在10 g l-1 时就达到了显著水平,并且所有酶均有随着水浸液浓度增加而增大的趋势;相同部位的水浸液随着浓度的增加,细菌和真菌的数量呈增加趋势,而放线菌的数量呈减少趋势;三种生姜水浸液均随着浓度的增加降低了土壤中有机质的含量,加剧了土壤中硝态氮含量的积累,根茎水浸液对土壤有效磷、速效钾和铵态氮均显示出低浓度提高其含量而高浓度降低其含量的趋势,而茎和叶水浸液则随着浓度的增加均降低了其含量。 4. 与生姜单作相比,所有间作系统均在旺盛生长期和收获期不同程度地提高了土壤酶活性,同时也增加了土壤细菌数量及土壤微生物总数但不显著;所有间作系统在旺盛生长期和收获期均不同程度地影响了土壤真菌及放线菌数量(增加或减少),所有间作系统间的多样性指数差异不显著,除了旺盛生长期四种作物(生姜-大豆-四季葱-大蒜)的间作模式显著降低了多样性指数,其值仅为生姜单作的33.18%;生姜与大豆间作不仅提高了19.6%的生姜产量而且获得了较好的经济效益,并且,所有间作系统均显著抑制了生姜姜瘟病的发生。 5. 不同栽培模式不同程度地影响了收获期生姜的株高、分枝数、根茎产量及内在品质。其中处理2显著地促进了生姜的分枝(10.5%),同时处理2、3和4也促进了生姜的生长(株高分别增加了15.0%、11.4%和14.0%),并且这三个处理提高了生姜的产量;处理2和3能有效提高生姜块茎中维生素C(分别较单作生姜显著提高了3.29%和4.05%)、处理3显著提高了可溶性糖(8.2%)、姜辣素(4.6%)和蛋白质等有益物质的含量,降低硝酸盐有害物质的含量(处理2显著降低了14.0%),改善了姜块的外观和内在品质。并且,生姜与大豆间作具有最高的纯收入和产投比,分别较生姜单作提高了24.80%和8.8%。Recently, allelopathy has been more and more paid attentions by national and foreign scholars with profound research on reasons of crop replanted (continuous planted) obstacle. Ginger rhizome is valuable all over the world either as a spice or herbal medicine and ginger replanted obstacle is also paid attentions. Systematic research on ginger allelopathy will contribute to understanding and ultimate solving problem of ginger replanted obstacle. The effects of ginger aqueous extracts with different parts and concentrations on seed germination and early seedling growth of soybean and chive were studied in this article to testify that ginger existed allelopathy. Furthermore, ginger autotoxicity was also studied by pot experiment in greenhouse (namely research on effects of ginger aqueous extracts with different parts and concentrations on morphological indexes, physiological and biochemical indexes, photosynthesis, soil enzymes, soil microbial diversity and soil nutrients) to reveal mechanism of ginger degeneration and senescence, provide scientific basis for selecting appropriate intercropping species and put forward scientific resolvent for ginger replanted obstacle. The main results were as follows: 1. All aqueous extracts at all concentrations inhibited seed germination, seedling growth, water uptake and lipase activity of soybean and chive compared with the control, and the degree of inhibition increased with the incremental extracts concentration. The degree of toxicity of different ginger plant parts can be classified in order of decreasing inhibition as stem>leaf>rhizome. The results of this study suggested that rhizome, stem and leaf of ginger contained water soluble allelochemicals which could inhibit seed germination and seedling growth of soybean and chive. The rhizome is the main harvested part of ginger. The residue (mainly stems and leaves) of the ginger plant should be removed from the field so as to diminish its inhibitory effect. The main allelopathic components of three kind of aqueous extracts were as follows: Rhizome extract chiefly contained syringic acid and vmbelliferone and stem extract mainly contained frulic acid whose content was the highest (73.4 ug/g). The other six substances were detected except of frulic acid, but only contents of syringic acid, vmbelliferone and p-coumaric acid were higher. 2. Stem and leaf aqueous extracts of ginger with different concentrations significantly inhibited plant height, leaf numbers per plant and leaf area, and the degree of inhibition increased with the incremental extracts concentration. However, tiller number per plant of ginger seedling showed no significant difference. At the same time, ginger aqueous extracts also influenced biomass including under-ground biomass, above-ground biomass and total biomass (fresh weight) to a large extent. Under the same concentration, stem aqueous extract showed the mostly inhibitory effect on morphological indexes and biomass indexes of ginger seedling. Rhizome aqueous extract showed the leastly inhibitory effect and leaf aqueous extract was intervenient. Enhanced concentration of ginger aqueous extracts significantly reduced total chlorophyll content, accompanying with increases in memberane permeability (REL) and lipid peroxidation (MDA). Compared with the control, rhizome ginger aqueous extract of lower concentration (10 g l-1) increased the activities of major antioxidant enzymes (superoxide dismutase, SOD; peroxidase, POD; catalase, CAT; ascorbate peroxidase, APX) of ginger leaf tissue and higher concentration inhibited the activities of four antioxidant enzymes. However, stem and leaf aqueous extract inhibited the activities of four antioxidant enzymes with increase in concentration. Meanwhile, enhanced concentration of ginger aqueous extracts significantly reduced photo-parameters of ginger seedling (including CO2 concentration, stoma conductivity, net photosynthesis rate and transpiration rate). 3. Rhizome, stem and leaf ginger aqueous extract showed different effect on six soil enzyme activities, and acid phosphatase and invertase showed significant effect when aqueous extract concentration got 10 g l-1. Furthermore, six soil enzyme activities increased with increase in aqueous extract concentration. Bcterial and fungi number tended to increase while antinomyces tented to decrease with the increase in aqueous extract concentration of identical part. Ginger aqueous extracts reduced soil organic matter content with increased concentration, accompanying with NO3-—N accumulation in soil. Rhizome aqueous extract showed the same tendency for available P, available K and NH4+—N, namely lower concentration increased their contents in soil and higher concentration reduced their contents. While stem and leaf aqueous extracts reduced their contents with the increamental concentration. 4. All intercropping systems increased soil enzyme activities to different extent both at VGS and at HS compared to solo ginger. All intercropping systems increased the colony numbers of soil bacteria and total of soil microbe but not significantly either at VGS or at HS. All intercropping systems increased the colony numbers of soil fungi and actinomytes to a different extent (increase or decrease) both at VGS and at HS. For DI, difference between all cultivation patterns and S-G was not significant either at VGS or at HS except that G-S-C-G whose value was only 33.18% of S-G at VGS significantly decreased. G-S not only increased ginger yield by 19.6% but also obtained better economic benefit. Furthermore, all intercropping systems significantly inhibited occurrence of bacterial wilt of ginger. 5. Different cultivated pattern influenced plant height, tiller numbers, rhizome yields and intrinsic quality of ginger. Treatment 2 significantly facilitated tiller occurring (10.5%). Treatment 2, 3 and 4 promoted ginger growth (plant height respectively increased 15.0%、11.4% and 14.0%) and enhanced rhizome yields. Treatment 2 and 3 effectively increased vitamin C content (significantly increased 3.29% and 4.05% compared to solo ginger). Treatment 3 significantly increased contents of beneficial substances such as soluble sugar (8.2%), gingerols (4.6%) and protein. Treatment 2 significantly decreased contents of deleterious substance namely nitrate (14.0%) and improved appearance and intrinsic quality of ginger rhizome. Furthermore, treatment 2 (ginger/soybean intercropping) could obtain better economic benefit and showed the highest net income and ratio of benefit and cost whose values respectively increased by 24.80% and 8.8% compared to solo ginger.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

土壤是人类赖以生存的自然环境和农业生产的重要资源,目前土壤受到干旱和盐胁迫的危害越来越严重。杨树具有适应性强、生长快和丰产等特性,本论文以青杨组杨树为模式植物,研究杨树对土壤干旱和盐胁迫的生态生理及蛋白质组学反应,研究成果可为我国干旱半干旱地区营造人工林、防止沙漠化提供理论依据,也为恢复与重建盐污染地区退化生态系统提供科学指导。主要研究结果如下: 1 青杨不同种对逐步干旱胁迫的响应差异 将来自喜马拉雅山东缘高海拔的康定杨和低海拔的青杨枝条扦插在温室中,用来检测它们对逐步干旱胁迫的响应。研究结果表明来自不同海拔的杨树对逐步干旱胁迫的适应性反应是不一样的。株高、叶片发育、叶片相对含水量、丙二醛、过氧化氢等指标的显著性变化在青杨中比在康定杨中来得早些,而且随着干旱胁迫程度的增加,这些参数的变化越来越明显,尤其是当青杨受到严重干旱胁迫的时候;而可溶性蛋白、可溶性糖、游离脯氨酸、抗氧化酶活力变化在康定杨中来得早一些。与青杨相比,在干旱胁迫下,康定杨仍能保持较好的植株生长和叶片发育;康定杨也能在逐步干旱条件下积累更多的可溶性蛋白、可溶性糖、游离脯氨酸及抗氧化酶活力,但是在丙二醛和过氧化氢含量方面增加的更少些。而且,我们的研究结果表明高海拔的康定杨有更强的耐干旱能力,杨树对干旱胁迫的适应能力与干旱发生的速度、强度、持续时间及两种杨树的海拔有关。 2 干旱胁迫下青杨不同种的蛋白质组学分析 来自青杨和康定杨雌株的枝条扦插在温室中,用来研究它们对干旱胁迫的蛋白质组学反应。采用TCA-丙酮/酚提取法提取总蛋白,并进行双向电泳分析。在每个处理的重复图像中都能检测到1,000 个以上的蛋白点。在青杨中有58 个蛋白在干旱处理后发生显著变化,其中22 个蛋白通过肽指纹图谱成功鉴定。康定杨中有69 个蛋白的表达量发生了显著变化,其中有25 个蛋白通过肽指纹图谱成功鉴定。这些被鉴定的蛋白主要参与了光合作用、氧化还原平衡、信号传导、能量代谢、蛋白质合成等过程。尽管被鉴定的蛋白只占叶片总蛋白的很少一部分,但这些被鉴定的干旱响应蛋白可能对维持植株内部平衡方面有重要作用。 3 青杨的盐胁迫响应 青杨植株分别用 0、50 和100 mM NaCl 溶液进行处理。叶片相对含水量、叶绿素a、b 含量、CO2 同化速率和气孔导度的降低表明叶绿体受到了盐胁迫的影响。过氧化氢、丙二醛含量及电导率的升高表明细胞受到了伤害。可溶性糖、游离脯氨酸含量及抗氧化酶含量的上升增加了植株耐盐胁迫的能力。在每个处理的重复图像中都能检测到1,000 个以上的蛋白点。其中有38 个盐响应蛋白被成功鉴定,有16 个蛋白(点4、10、11、14、15、21、24、26、27、28、33、34、35、36、37 和38)出现在盐胁迫的植株中;3 个蛋白(点10、11 和35)只出现在重度盐胁迫处理中;而1 个蛋白(点1)只出现在对照处理中。2 个蛋白(点1 和2)表达量下降,其余蛋白点表达量都增加。被鉴定的蛋白一部分参与了生理生化反应,而另一部分则在信号传导、蛋白质合成等方面有重要作用。盐胁迫下的生理生化变化及蛋白质组学的联合研究有利于青杨对盐胁迫的适应性分析。 Soil is the indispensable environment for human survival and important resource for agriculture development. Nowadays soil is threatened by drought stress and salt stress. Poplars (Populus spp.) possess some characters such as strong acclimilation, fast growth and great production of biomass. In this study, different species of Populus section Tacamahaca spach were used as model plants to investigate the ecophysiological and proteomic responses to drought stress and salt stress. Our results can provide theoretical evidence for the afforestation and prevention of desertification in the arid and semi-arid areas, and also can supply scientific direction for the reconstruction and rehalibitation of ecosystems contaminated by salinity. The results are as follows: 1 Adaptive responses to progressive drought stress in two contrasting poplar species originating from different altitudes Cuttings of Populus kangdingensis C. Wang et Tung and Populus cathayana Rehd., originating from high and low altitudes in the eastern Himalaya, respectively, were examined during one growing season in a greenhouse to determine the effects of progressive drought stress. The results manifested that the adaptive responses to progressive drought stress were different in these two species from different altitudes. Significant changes in height increment, leaf development, relative water content (RWC), malondialdehyde (MDA) and hydrogen peroxide (H2O2) appeared earlier in P. cathayana than in P. kangdingensis, whereas changes in soluble protein, soluble sugar, free proline and antioxidant enzymes appeared earlier in P. kangdingensis. In addition, changes in these parameters became more and more significant when the drought stress progressed, especially under severe drought stress in P. cathayana. Compared with P. cathayana, P. kangdingensis was able to maintain a superior height increase and leaf development under drought stress. Also, P. kangdingensis possessed greater increments in soluble protein, soluble sugar, free proline and antioxidant enzymes, but lower increments in MDA and H2O2 than did P. cathayana when the cuttings were exposed to progressive drought stress. Our results suggest that P. kangdingensis originating from the high altitude has a better drought tolerance than does P. cathayana originating from the low altitude. Furthermore, this study manifested that acclimation to drought stress are related the rapidity, severity, duration of the drought event and the altitude of two contrasting species. 2 Proteomic responses to drought stress in two contrasting poplar species originating from different altitudes The cuttings from a female clone of P. kangdingensis and P. cathayana were used to determine proteomic response to drought stress, respectively. Total proteins of the leaves were extracted by a combination of TCA-acetone and phenol, and separated by two-dimensional gel electrophoresis. More than 1,000 protein spots were reproducibly detected on each gel. 58 differentially expressed spots were detected under drought stress in P. cathayana and 22 drought-responsive proteins were identified by peptide mass fingerprint. 69 differentially expressed spots were detected under drought stress in P. kangdingensiss and 25 drought-responsive proteins were identified by peptide mass fingerprint. The identified proteins are involved in several processes, i.e., signal transduction, protein processing, redox homeostasis, CO2 fixation and energy metabolism. Although the proteins identified in this investigation represent only a very small part of the poplar leaf proteins, some of the novel drought-responsive proteins identified here may be involved in the establishment of homeostasis in response to drought stress in the woody plants. 3 Responses to salt stress in P. cathayana Cuttings from a female clone of P. cathayana were treated by Hoagland’s solution: 0, 50, 100 mM NaCl, respectively. Salinity significantly decreased the relative water content of leaves, the contents of chlorophyll a and chlorophyll b, CO2 assimilation rate (A) and stomatal conductance (gs) in both salt stress treatments,which suggested the chloroplast was affected by salt stress. The observed increases of H2O2 and malondialdehyde contents and electrolyte leakage suggested that salinity caused cellular damage, whereas the increases in compatible solutes and in the activities of antioxidant enzymes enhanced the salt tolerance. More than 1,000 protein spots were reproducibly detected on each gel, and 38 salt-responsive proteins were successfully identified by peptide mass fingerprint (PMF). 16 spots (spot 4, 10, 11, 14, 15, 21, 24, 26, 27, 28, 33, 34, 35, 36, 37 and 38) absent in the control sample were induced by the salt treatment, and three spots (spot 10,11 and 35) were present only in the severely salt-stressed treatment. The %vol of the differentially expressed proteins generally increased with progressing salt stress, except for the decreased %vol of two proteins (spot 1 and 2) under salt stress and the presence of spot 1 only in the control sample. Some of the novel salt-responsive proteins identified here may be involved in physiological, biochemical response to salt stress in P. cathayana, the other identified proteins play a role in numerous cellular functions, including signal transduction and protein processing. An integrated physiological, biochemical and proteomic approach was used here to systematically investigate salt acclimation in poplar.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

光是植物赖以生存的重要环境因子,但是植物在获得光的同时不可避免的会受到紫外辐射的伤害。尤其是近年来,人类向大气中排放的大量氮氧化合物和氟氯烃类化合物(CFC’s)引起臭氧分子的分解,导致到达地球表面的紫外辐射增加,特别是UV-B辐射增强。而另一方面,植物对UV-B辐射反应的敏感性在种间和品种间存在差异,主要受植物基因型,生态型和生活型的控制。本项目分别以粗枝云杉和青杨组杨树为模式植物,从形态和生理生化方面分别研究了来自不同水分背景下的粗枝云杉种群和来自不同UV-B背景下的青杨种群在增强UV-B下的反应及其反应差异,并探讨了干旱、喷施外源脱落酸(ABA)对它们抗UV-B能力的影响。研究成果可为生态系统的恢复与重建提供理论依据和科学指导。主要研究结果如下: 1. 粗枝云杉的两个种群,湿润种群(来自四川黑水)和干旱种群(来自甘肃迭部)在水分良好和干旱状况下表现出对增强UV-B的不同响应。同时,干旱对粗枝云杉抗UV-B能力的影响也得到研究:两种胁迫共同作用时,干旱表现出在一定程度上减弱了增强UV-B对粗枝云杉的生理特性的影响。 干旱胁迫显著降低了两个粗枝云杉种群的光合同化速率(A), 气孔导度(gs)和PSII的有效光量子产量(Y), 同时,提高了非光化学猝灭效率(qN)和超氧化物歧化酶(SOD)的活性。与湿润种群相比,干旱种群抗旱性更强,表现为干旱种群拥有更高的SOD和干旱进一步加剧了UV-B的胁迫效应。 本研究中,干旱胁迫单独作用时,显著降低了青杨两个种群的生物量积累和气体交换,具体包括A、gs、蒸腾速率(E)和光合氮利用效率(PNUE),提高了两个种群的瞬时水分利用效率(WUEi)、长期水分利用效率(WUET)、碳同位素组分(δ13C)和氮含量(N)。同时,UV吸收物质和ABA含量也得到积累。另一方面,增强UV-B对青杨两个种群各个指标的影响,同干旱所引起的效应有着相似的趋势。同低海拔种群相比,高海拔种群有着更强的抗旱和抗UV-B能力,具体表现在高海拔种群有着更多的生物量积累,更强的气体交换和水分利用效率及更高水平的ABA和UV吸收物质含量。相比干旱诱导的生物量积累和气体交换的降低,在干旱和增强UV-B两个胁迫同时作用于青杨时,这种降低表现的更为明显。显著的干旱和UV-B的交互作用还表现在WUEi, WUET, δ13C, 可溶性蛋白含量, UV吸收物质含量, ABA, 叶片和茎中的N含量以及C/N比中。 3. 经过一个生长季的试验观察,增强UV-B、外源ABA及两因子共同作用对青杨的生物量积累、气体交换、内源ABA和UV吸收物质含量、抗氧化系统以及碳、氮含量和碳/氮比均产生显著影响。本试验中,青杨的两个种群分别来自中国西南部的不同海拔地区,高海拔种群来自青海大通而低海拔种群来自四川九寨。外源ABA的胁迫为直接喷施ABA到青杨叶片,而增强UV-B胁迫是利用平方波系统分别保证青杨苗暴露于外界UV-B强度和两倍于外界UV-B强度下。 研究结果显示,增强UV-B显著的降低了两个青杨种群的株高、基茎、总叶面积和总生物量等生长指标,同时也导致其A、gs、E和叶片中碳含量的减少。而显著增加了SOD和过氧化物酶(GPx)活性水平,诱导了过氧化氢(H2O2)和MDA的显著增加,促进了UV吸收物质和不同器官中内源ABA含量的显著积累。另一方面,外源ABA引起了青杨光合同化速率的下降,SOD和GPx酶活性的增强,H2O2 和 MDA含量也表现出显著增加,同时,内源ABA含量得到显著累积。同低海拔种群相比,高海拔种群具有更加抗UV-B和外源ABA的特性。显著的UV-B和ABA的交互作用表现在A, E, SOD和GPx活性,以及叶片和根部的内源ABA等一系列指标中。在所有胁迫下,叶片中的碳和氮含量同其在茎和根中的含量显著相关,另外,叶片和茎中的氮含量同茎中的碳含量显著相关。 Sunlight is an indispensable environment factor for plants survival and development. Meanwhile, photosynthetic organisms need sunlight and are thus, inevitably, exposed to UV radiation. Especially for recent years, ultraviolet radiation, especially UV-B reaching the Earth’s surface increased because of depletion of ozone layer resulted from emission of NxO and CFC’s from human activities. On the other hand, the sensitivity of plants to UV-B radiation depends on the species, developmental stage and experimental conditions. In this experiment, two populations of Picea asperata Mast from different water background and two populations of Populus cathayana Rehder from different altitude background were selected as model plants to assess the effects of enhanced UV-B radiation. Morphological and physiological traits induced by enhanced UV-B in each plant species were observed and the different responses were discussed, furthermore the influences of drought and exogenous ABA on responses induced by enhanced UV-B were studied. The study could provide a strong theoretical evidence and scientific direction for the afforestation and rehabilitation of ecosystem. The results are as follows: 1. Different responses of two contrasting Picea asperata Mast. populations to enhanced ultraviolet-B (UV-B) radiation under well-watered and drought conditions were investigated. And the effects of enhanced UV-B on tolerance of drought were also observed in our study that the UV-B exposure may have alleviated some of the damage induced by drought. Two contrasting populations, originating from a wet and dry climate region in China, respectively, were employed in our study. Drought significantly decreased CO2 assimilation rate (A), stomatal conductance (gs) and effective PSII quantum yield (Y), while it significantly increased non-photochemical quenching (qN) and the activity of superoxide dismutase (SOD) in both populations. Compared with the wet climate population, the dry climate population was more acclimated to drought stress and showed much higher activities of SOD and ascorbate peroxidase (APX), and much lower levels of malondialdehyde (MDA) and electrolyte leakage. On the other hand, enhanced UV-B radiation also induced a significant decrease in the chlorophyll (Chl) content in both populations under well-watered conditions, and a significant increase in UV-absorbing compounds in the wet climate population. After one growing season of exposure to different UV-B levels and watering regimes, the increases in MDA and electrolyte leakage, as induced by drought, were less pronounced under the combination of UV-B and drought. In addition, an additive effect of drought and UV-B on A and gs was observed in the wet climate population, and on the activity of APX and qN in the dry climate population. 2. The significant effects of drought, enhanced UV-B radiation and their combination on Populus cathayana Rehd. growth and physiological traits were investigated in two populations, originating from high and low altitudes in south-west China. Our results showed that UV-B acts as an important signal allowing P. cathayana seedlings to respond to drought and that the combination of drought and UV-B may cause synergistically detrimental effects on plant growth in both populations. In both populations, drought significantly decreased biomass accumulation and gas exchange parameters, including A, gs, E and photosynthetic nitrogen use efficiency (PNUE). However, instantaneous water use efficiency (WUEi), transpiration efficiency (WUET), carbon isotope composition (δ13C) and nitrogen (N) content, as well as the accumulation of soluble protein, UV-absorbing compounds and abscisic acid (ABA) were significantly increased by drought. On the other hand, cuttings from both populations, when kept under enhanced UV-B radiation conditions, showed very similar changes in all above-mentioned parameters, as induced by drought. Compared with the low altitude population, the high altitude population was more tolerant to drought and enhanced UV-B, as indicated by the higher level of biomass accumulation, gas exchange, water-use efficiency, ABA concentration and UV-absorbing compounds. After one growing season of exposure to different UV-B levels and watering regimes, the decrease in biomass accumulation and gas exchange, induced by drought, was more pronounced under the combination of UV-B and drought. Significant interactions between drought and UV-B were observed in WUEi, WUET, δ13C, soluble protein, UV-absorbing compounds, ABA and in the leaf and stem N, as well as in the leaf and stem C/N ratio. 3. During one growing season, significant effects induced by enhanced UV-B radiation, exogenous ABA and their combination on biomass accumulation, gas exchange, endogenous ABA and UV-absorbing compounds concentrations, antioxidant system as well as carbon (C) content, nitrogen (N) content and C/N ratio were investigated in two contrasting Populus cathayana populations, originating from high and low altitudes in south-west China. Exogenous ABA was sprayed to the leaves and enhanced UV-B treatment was using a square-wave system to make the seedlings under ambient (1×) or twice ambient (2×) doses of biologically effective UV-B radiation (UV-BBE). Enhanced UV-B radiation significantly decreased height, basal diameter, total leaf area, total biomass, A, gs, E and carbon (C) content in leaves, and significantly increased activities of SOD and guaiacol peroxidase (GPx), hydrogen peroxide (H2O2) and malonaldehyde (MDA) content as well as the accumulation of UV-absorbing compounds and endogenous ABA concentrations among different organs in both populations. In contrast, exogenous ABA showed significant decrease in A and significant increases in activities of SOD and GPx, H2O2, MDA content and the endogenous ABA concentrations. Compared with the low altitude population, the high altitude population was more tolerant to enhanced UV-B and exogenous ABA. Significant interactions between UV-B and ABA were observed in A, E, activities of SOD and GPx, as well as in endogenous ABA in leaves and roots of both populations. Across all treatments, C and N content in leaves was strongly correlated with those were in stems and roots, respectively. Additionally, leaf and stem N content were significant correlated with stem C content.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

杨树具有分布广、适应性强,在生态环境治理和解决木材短缺方面均占有重要位置。青杨(Populus cathayana Rehd.)是青杨派树种的重要成员之一,也是我国的特有种。本研究通过对不同水分梯度的干旱胁迫下青杨形态和生理生化的反应,不同pH值盐碱胁迫下不同海拔和不同气候地区的四个青杨种群在生理生态上的反应差异,以及在干旱和低温胁迫下青杨lea2, lea3组基因表达差异的研究,从形态、生理、生化和分子生物学水平系统地研究了青杨在不同逆境胁迫下的反应和青杨不同种群在盐碱胁迫下的反应差异。主要研究结果如下: 1. 青杨在干旱胁迫下的反应机制:中度和重度干旱胁迫下植株的生长受到明显抑制。表现在光合系统上青杨的净光合同化速率(A)下降,主要原因是气孔导度(gs),胞间二氧化碳浓度(Ci)下降。另外最大量子产量(Fv/Fm)、光化学猝灭效率(qP)降低反应了干旱胁迫下光合系统II(PSII)受到严重损伤, 而且非光化学猝灭效率(qN)上升,导致可利用化学能产量下降,叶绿体产生淀粉的量减少。qP降低qN上升导致产生的过量电子对光合系统的伤害造成活性氧以及丙二醛(MDA)的含量增加。超微解剖结构显示,干旱胁迫增强时,叶绿体内淀粉粒的数目减少,而且叶绿体、线粒体等细胞器中嗜锇颗粒的数目增加。为清除细胞内的活性氧,植物一般的反应是抗氧化系统酶活性增加,对青杨来讲超氧化物歧化酶(SOD), 抗坏血酸过氧化物酶(APx)活性的增加远大于过氧化物酶(POD),这显示了在青杨中SOD、APx酶在清除活性氧的作用上大于POD。另外同工酶研究结果显示这些酶活性的升高主要是由于各条同工酶带表达量的增加,而不是诱导新酶带的产生。另外,75% FC水分处理下有些指标非但没有下降,像A和有效光量子产量(Y)的值都略有增加,而且gs同时增加。另外,100% FC比75% FC细胞内淀粉粒的数目少一些,但有少量的嗜锇颗粒。这证明100% FC土壤水分也许并非最适合青杨生长。 2. 盐碱胁迫对不同海拔地区青杨种群的反应差异:青杨高海拔和低海拔种群的各种生理特性随着pH值上升都受到了很大的影响。两种群叶和根中Na+、K+ 含量, Na+/K+比率随着pH值的上升影响显著。在pH值高于10.4时高海拔种群叶和根中Na+/K+比率急剧下降但是低海拔种群中却一直维持在较高水平。两种群中MDA、脯氨酸(Proline)的含量,抗氧化系统酶的活性都受到了严重的影响,证明两个种群都属于盐碱胁迫敏感类型但是高海拔的种群对盐碱胁迫的耐性要高于低海拔。这主要是由于高海拔种群一般具有耐干旱、低温胁迫的能力,而植物的抗逆机制一般都有共通之处。 3. 盐碱胁迫对不同气候地区青杨种群的反应差异:盐碱胁迫下两种群的光合作用受到明显的抑制,具体表现在叶绿素的含量和A 显著下降。净光合速率的下降主要是由于叶片gs,Ci 值降低引起的。与湿润地区的种群相比盐碱胁迫增强时,干旱地区的种群叶绿素含量和光合能力的升高与K+离子含量增加有关。植物维持细胞质高K+/Na+值对植物的抗盐性有很重要的作用。为清除盐碱胁迫产生的活性氧,抗氧化系统酶活性增加。盐碱胁迫下干旱地区的种群在SOD、CAT 和谷胱甘肽还原酶(GR)等酶的活性均显著上升,而湿润地区种群只有谷胱甘肽氧化酶(GST)的活性明显增加,说明干旱种群的抗氧化酶系统在较高盐碱胁迫下的保护作用要强于湿润种群。这主要是由于植物抗盐碱胁迫与抗干旱胁迫在一些方面的机制是一致的,抗旱种群一般也能抵抗一定程度的盐碱胁迫。 4. 青杨lea2、lea3 基因在干旱和低温胁迫下的表达差异:通过荧光定量PCR 分析,lea2、lea3 组基因在干旱和低温胁迫下在mRNA 水平的瞬时表达量明显升高,说明了两基因在青杨耐干旱和低温胁迫上都起显著的作用。而且两基因在干旱胁迫下,表达量的升高和降低的时间近乎同步,表明两基因在干旱胁迫下对植物应急保护机制的启动都发挥着重要的作用。低温胁迫下lea3 基因在mRNA 水平上表达量显著上升的时间要早于lea2,而且lea3 基因的持续作用时间明显长于lea2 组基因,说明了低温胁迫开始时lea3基因在植物应对逆境的作用上要大于lea2 基因。 Poplars play an important role in lumber supply, and are important components of ecosystems due to their wide distribution and well adaptation. Populus cathayana Rehd., which belongs to Populus Sect. Tacamahaca Spach, is one of the most important resources of poplars and is specialist to china. In this study, different altitudes and climates populations of P. cathayana were used as experiment materials to investigate the adaptability to drought and salt-alkali stresses. And the cultures of P. cathayana were used to analyze the lea2 and 3 group genes expression when exposed to drought and low temperature stresses. The results are as follows: 1. A large set of parallel responses to drought stress: Drought stress caused pronounced growth inhibition. A decreased significantly and was mainly the result of gs and Ci down. Besides, Fv/Fm, qP decreased and that reflected the harmful effects to PSII of drought stress. In accordance with qN increasing, decreased useful energy production caused the starch numbers reduction in chloroplast. The qP up and qN down improved the levels of ROS and MDA. Starch numbers in chloroplast reduced and plastoglobuli numbers increased when soil water content decreased. To reduce ROS, the activities of SOD, APX, CAT and PPO were activated. The isozymes results show that the rising activities of the antioxidant enzymes resulted from certain isoform content increased, and not from the new band produced. Interestingly, morphological results show 100%FC maybe wasn’t the favorite water content for P. cathayana growth. 2. Effect of salt-alkali stress on morphological and physiological changes in two different altitudes populations of P. cathayana: We compared the physiological responses of two populations of Populus cathayana Rehder, originating from altitudes 2,840 m and 1,450 m. Our results demonstated that Na+ and K+ contents, and Na+/K+ ratios in leaves and roots are greatly affected by pH values. At pH 10.4, the Na+/K+ ratios in both leaves and roots sharply dropped in the higher altitude population but were always maintained at higher levels in the lower altitude population. The pH values causing maximum malondialdehyde (MDA) level, free proline content and antioxidant enzyme activities were significantly different in two populations. These results indicated that the higher altitude population exhibits greater tolerance to alkalinity stress than does the lower altitude population. 3. Morphological and physiological changes in two different climates populations of P. cathayana when exposed to salt-alkali stress. Salt-alkali stress caused pronounced inhibition of the growth and especially in photosystem. Pigments content and A decreased significantly and at the same time gs and Ci decreased too. Compared with wet climate population, the Chlorophyll content and A increased in drought climate population as pH value rising was related to the K+ content increasing. It is important to resist salt-alkali stress that the K+/Na+ ratio matained at high level in cytoplasm. To reduce ROS content, the SOD, CAT and GR activities rised significantly in drought population but only GST increased in wet population. The drought population showed higher salt-alkali tolerance than the wet population mainly resulted from the fact that drought tolerance was in accordance with salt-alkali tolerance to some extent. 4. The different expressional model of lea2 and lea3 gene when P. cathayana was exposed to drought and cold stress. RT-PCR results show both lea2 and lea3 suddenly expressed significantly in mRNA level under drought and cold stress. The expression level of two genes reached optimal level at the same time. But under cold stress, the earlier significantly rising expressional time and the longer maintained higher level time in lea3 than lea2 elucidated that lea3 may be more important than lea2 in resisting cold stress in short time in P. cathayana.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

雌雄异株植物对环境的不同响应一直是一个有趣而新颖的研究领域,由于雌雄个体不同的繁殖成本及不同的生存策略,使得雌雄植株在生长、存活、生殖格局、空间分布、资源配置等方面已经表现出明显的不同,在生理和分子水平上也表现出明显的性别间差异。干旱是制约农林业发展的环境因子之一,叶锈病是对杨树危害最严重的病害之一,由于长期进化的结果,不同性别的植物必然对生物和非生物胁迫有着不同的响应。本文以雌雄异株的青杨为模式植物,研究雌雄间在生理、生化、亚细胞结构和蛋白质水平上对生物和非生物胁迫的差异响应。主要研究结果如下: (1) 青杨雌雄植株对锈病胁迫的生理生化差异响应 在正常的对照组中,雄株叶片比雌株叶片有着较高的活性氧自由基产生速率、较高的SOD、POD、PPO 和较低的CAT 活性;在锈病感染的早期阶段, SOD、POD、CAT 活性、活性氧自由基产生速率、H2O2 含量、膜脂过氧化程度和细胞膜的电渗率在雌雄株中都增加,而PPO 仅在雄株中增加明显,APX 仅在雌株中增加明显,并且雌株比雄株有着更严重的锈病感染程度、细胞膜的伤害程度和光合系统II 的破坏程度,雌株有更多的净光合速率、气孔导度和叶绿素a 含量的降低,在同工酶变化上,雌雄间对锈病也显示出不同的表达模式。结果显示,雄株比雌株对锈病有着更好的抗性和更有效的ROS 清除系统。 (2) 青杨雌雄植株对干旱胁迫的生理生化及亚细胞结构的差异响应 与较好水分条件相比,干旱下雄株比雌株有着更高的A-Ci 响应参数,如Rubisco 最大羧化速率、光呼吸速率、暗呼吸速率和最大电子传递速率等。干旱显著地增加了膜脂过氧化程度和游离脯氨酸含量,并且雄株比雌株表现出较低的膜脂过氧化程度,较高的总蛋白和游离脯氨酸含量。无论是中度干旱还是极度干旱,除了CAT 外,雄株比雌株表现为较强的抗氧化酶活性,在同工酶谱带上,雌雄间表现出不同的变化模式,并且有些条带是干旱影响应的,而有些条带是性别特异性的,这些性别特异性条带能够作为鉴定性别快速而准确的标记。干旱显著地影响了线粒体、叶绿体和细胞壁的结构,尤其在中度干旱胁迫下,雄株线粒体和叶绿体比雌株呈现出较好的完整性,并且雄株细胞壁要比雌株更厚。因此, 雄株比雌株表现出更强的干旱忍耐性和更高效的抗氧化酶系统。 (3) 青杨雌雄植株对干旱胁迫的蛋白质组差异响应 用双相电泳检测到雌雄间近1000 个蛋白点,通过对比发现对照组雌雄间有54 个差异蛋白点,干旱下雌雄间有108 个差异点,其中102 个被质谱成功鉴定。对照组雌雄间的差异蛋白主要集中在与光合作用相关蛋白、抗氧化酶、胁迫防御蛋白和一些调节基因表达的蛋白;干旱胁迫下雌雄间差异蛋白明显增多,主要有参与信号转导、调节基因表达、蛋白质加工、转录产物的转录翻译后修饰的调节性蛋白蛋白和参与氧化还原平衡、抗胁迫、细胞壁合成、光合作用、能量代谢、氨基酸代谢和脂肪酸代谢等的功能性蛋白。干旱下这些蛋白的表达量在雌雄中有的表现出相同的表达模式,如干旱下雌雄株中Rubisco 激活酶、小热激蛋白等表达都增加,而有的表现出相反的表达模式,如Rubisco 大亚基的降解片段、羰酸酯酶等在雄株中表达量上调而在雌株中却是下调。因此,雌雄间在蛋白质水平上对干旱胁迫响应的差异是显著的,也是复杂的。 It is an interesting and novel topic that dioecious plants possess different responses to environmental stress. As for the different productive cost and different survive strategy, different sexual plants have shown obviously morphological, physiological and molecular differences. Drought is one of the most worldwidely important environmental stress factors that limit plant growth and ecosystem productivity. Rust disease is one of the economically important diseases in many trees. As a result of the long evolutionary process, male and female plants should show different responses to abiotic and biotic stress. In this paper, using a dioeious tree of Populus cathayana Rehd as a model, we study the sexual differences to drought and rust disease stress in physiological, biochemical, sub-cellular and proteomics levels. The main results are follows: (1) The sexual differences in physiology and biochemistry of poplar to rust disease In controls, males showed higher production of superoxide radicals, higher activities of SOD, POD, PPO and lower CAT activity. Under rust disease, the activities of antioxidant, the content of ROS and the degree of cellular member destroyed were increased in both sexes, except for PPO in diseased males and APX in diseased females. However, females showed more seriously disease severity and cellular member and PS II destroyed degrees. Net photosynthesis rate, transpiration rate and chlorophyll a content were decreased more in diseased females than in males. There were also some different changes inantioxidant isozymes under rust disease. The results suggested that male poplar possessed a more effectively antioxidant system and were more resistant to rut disease than females. (2) The sexual differences in physiology and biochemistry of poplar to drought stress Under drought stress, there were higher rates of RuBP-saturated CO2 assimilation, dark respiration, photorespiratory release of oxygen, the max electron transportrate in CO2-saturated and carboxylation efficiency in males than in females. And males showed lower TBARS and higher proline content. Except for CAT, the activities of other antioxidants were higher in males than in females. Meanwhile, there were obviously differences in isozyme changes between teo sexes. Drought stress obviously destroyed the integralities of chloroplasts and mitochondria and the sexual differences in sub-cellular level were obviously under the moderate water stress. Male cell walls were more sensitive to drought stress than did female. The results suggested males were more resistant to drought stress. (3) The sexual differences in proteomics of poplar to drought stress By 2-D and MS analysis, we identified 102 different protein spots between males and females. Under control conditions, the different proteins were mainly in photosynthesis related proteins, antioxidants, stress response proteins and some gene expression related proteins. Under drought stress, the different proteins were focused on (i) regulated proteins such as signaling conduction, kinase, HSP, gene expressional regulation and protein modification, (ii) functional proteins such as photosynthesis, energy metabolism, antioxidant, redox, stress response, lipid metabolism and amino acid metabolism. Some protein showed the same expressional pattern, while some showed contrary expressional pattern. Thus, the results suggested that sexual differences in proteomics were significant and complex.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

人类活动引起全球大气中温室气体(CO2、CH4、NOx)浓度不断增加,致使地球表面温度在过去的100 年中已经增长了0.74 ± 0.18℃,预计到本世纪末将会增加1.1-6.4℃。此外,氮沉降也是当今社会的重要环境问题,随着经济发展的全球化, 高氮沉降也呈现出全球化趋势。全球气候变暖和氮沉降给陆地生态系统的地上、地下生物学和生物地球化学过程所带来巨大影响越来越引起人们的关注。 本文以川西亚高山针叶林的两个重要树种云杉和油松幼苗为研究对象,采用红外辐射增温(空气增温2.1℃,土壤增温2.6℃)和根部施氮(施氮量25 g N m-2yr-1)的方法,从生长形态、光合作用、抗氧化能力和矿质营养等方面研究这两种幼苗对气候变暖和氮沉降的响应。该实验为室外控制实验,包括四个处理:(1)不增温+不施氮(UU);(2) 不增温+施氮(UF);(3) 增温+不施氮(WU);(4) 增温+施氮(WF)。本研究旨在从生理生化、物质代谢 、生长及形态等不同水平上研究模拟增温和施氮对两种树苗的联合效应,提高我们对全球变化下亚高山针叶林早期更新过程的理解,同时也为森林管理提供科学依据。具体研究结果如下: 单独增温处理显著提高了云杉和油松幼苗的地茎、叶重、茎重、根重以及总生物量;单独施氮处理也增加了两种幼苗的株高和总生物量。而增温和施氮联合作用对两种幼苗生长的影响并不相同,联合作用对云杉幼苗生长指标的正效应显著低于单独施氮处理,但是联合作用比单独增温或施氮更大程度的促进了油松幼苗生物量的积累。 单独增温和施氮都有利于提高云杉和油松叶片中叶绿素含量、净光合速率(A)、最大净光合速率(Amax)、表观量子效率(Φ)、最大光能转化效率(Fv/Fm)和量子产量(Y)。与对两种幼苗生长指标的影响相似,加氮和增温共同作用下油松幼苗的以上光合指标比在单独增温或施氮处理下有更大程度的提高;而联合作用下云杉幼苗叶绿素含量、净光合速率、最大净光合速率、表观量子效率、最大光能转化效率以及量子产量比单独施氮处理明显地降低。 增温和施氮都显著地降低了云杉和油松幼苗针叶组织中活性氧和丙二醛的积累。交互作用降低了云杉幼苗叶片的抗氧化酶活性、脯氨酸和ASA 的含量,却显著提高了油松幼苗SOD、POD、APX 等抗氧化酶的活性,并且对油松幼苗脯氨酸和ASA 积累的促进作用比单一因子更加明显。因此,增温和施氮共同作用下油松幼苗叶片中O2-产生速率、H2O2 及MDA 含量明显降低,而云杉叶片中只有O2-产生速率出现降低趋势。 增温和施氮都降低了云杉体内的P、Ca、Mg 元素的含量,增加了Cu、Zn、Mn 在各器官内的积累。对油松幼苗而言,增温和加氮单独作用也显著降低了Ca 含量增加了Cu、Zn、Mn 的积累,但是不同于云杉幼苗的是P、Mg 也显著增加。增温和施氮联合作用对云杉幼苗体内元素的影响与单一施氮处理或增温处理相似,不同的是比单一因子作用更为明显降低了P、Ca、Mg 含量,增加了植株中N、Cu、Zn、Mn 的含量,但是油松矿质元素含量在联合作用下并没有产生类似于云杉幼苗的双因子叠加效应。 总之,尽管单独增温或者施氮都有利于云杉和油松幼苗生长指标、光合能力以及抗氧化能力的提高。但是,增温和施氮对云杉幼苗生长生理的促进效应非但没有在交互作用下有更大的提高,反而低于单独氮处理。与此不同的是,增温和施氮联合作用比单因子作用更有利于油松幼苗生长及生理指标的提高。 With the continued increase in atmospheric concentrations of greenhouse gases (CO2、CH4、NOx), the mean global surface temperature has increased by about 0.74 ± 0.18℃ over the past century and is predicted to rise by as much as 6.4℃ during this century. Besides global warming, nitrogen deposition is another serious environmental problem caused by human activities, and high nitrogen load has become globalization as a result of global economy development. Global climate warming and nitrogen deposition have induced dramatic alternations in above - and below- ground biology and biogeochemistry process in terrestrial ecosystems, and more and more attention has been invited to those problems. This experiment mainly studies two important species Picea asperata and Pinus tabulaeformis in subalpine coniferous forest of western Sichuan, China. Infared heaters are induced to increase both air and soil temperature by 2.1℃ and 2.6 ℃, respectively. Ammonium nitrate solution (for a total equivalent to 25 g N m-2 year-1) is added to soil surface. There are four treatments in this study: (1) unwarmed unfertilized (UU); (2) unwarmed fertilized (UF); (3) warmed unfertilized (WU); (4) warmed fertilized (WF). This study is conducted to determine the influences of experimental warming and nitrogen fertilization on physiolchemistry, nutrition metabolism, growth and morphology in the two coniferous species seedlings. The current study is favorable for increasing our understanding on the early phase of regeneration behavior in subalpine coniferous forest, and it also provide scientific direction for forest management under future global changes. The results are as follows: Artificial warming alone significantly increased basal diameter, leaf mass, stem mass, root mass and total biomass for Picea asperata and Pinus tabulaeformis seedlings, and single nitrogen fertilization are also favorable for growth of the two species and stimulate plant hight and total biomass. The two species seedlings respond differently to the combination of elevated temperature and nitrogen addition. Warming combined with nitrogen fertilization weakens the positive effects of nitrogen addition for growth of Picea asperata seedlings. However, the combination of elevated temperature and nitrogen fertilization further increase biomass accumulation of Pinus tabulaeformis seedlings. Both elevated temperature alone and nitrogen fertilization alone can increase photosynthetic pigments contents, net photosynthetic rate (A), maximum net photosynthetic rate (Amax), apparent quantity yield (Φ), maximum photochemical efficiency of photosystem II (Fv/Fm) and effective quantum yield (Y). Similarly with growth parameters, the combination of warming and nitrogen addition induced more increment of these above photosynthetic parameters for Pinus tabulaeformis seedlings. However, these photosynthetic parameters of Picea asperata seedlings under the combination of warming and nitrogen addition are lower than those under nitrogen fertilization alone. The levels of active oxygen species (AOS) and malodiadehyde (MDA) in needles of the two coniferous species seedling are obviously decreased by experimental warming or additional nitrogen. Warming combined with nitrogen fertilizer reduces the activities of SOD, CAT and APX, and the contents of proline and ASA of Picea asperata seedlings, but the combination significantly increases activities of these antioxidant enzymes in needlels of Pinus tabulaeformis seedlings and further improves the accumulation of proline and ASA compared to either artificial warming or nitrogen addition. Therefore, the rate of O2 - production, the contents of H2O2 and MDA in needles of Pinus tabulaeformis seedlings are remarkably reduced by the combination of warming and nitrogen addition, but the combination only significantly decreased the rate of O2 - production of Picea asperata seedlings. Elevated temperature or nitrogen fertilization decrease the contents of P, Ca, Mg but increase Cu, Zn, Mn contents for Picea asperata seedlings. For Pinus tabulaeformis seedlings, elevated temperature alone and nitrogen fertilization alone decreased Ca, but increased P, Mg, Cu, Zn, Mn contents. The effects of the combination of warming and nitrogen addition on these element contents in needles of Picea asperata seedlings are added or multiplied the effects of warming and nitrogen addition alone, resulting in less contens of P, Ca, Mg and more contents of Cu, Zn, Mn than either elevated temperature or nitrogen fertilization. Howere, these adding or multipluing single-factor effects on contents of these elements are not observed in the case of Pinus tabulaeformis seedlings. In conclusion, growth parameters, photosynthetic capacities and antioxidant abilities of Picea tasperata and Pinus abulaeformis seedlings are improved by experimental warming or nitrogen fertilization. Interestingly, the positive effects of warming and nitrogen addition on growth and physiological performances are not multiplied by the combination of elevated temperature and nitrogen fertilization, even dempened for Picea asperata seedlings. However, for Pinus tabulaeformis seedlings, growth and physiological performances are further improved by the combination.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To investigate the protective effects of melatonin against high-LET ionizing radiation, V79 Chinese hamster cells were irradiated with 100 keV/mu m carbon beam. Parallel experiments were performed with 200 kV X-rays. To avoid the impact from extra solvents, melatonin was dissolved directly in culture medium. Cells were cultured in melatonin medium for 1 hr before irradiation. Cell inactivation was measured with conventional colony forming assay, medium containing 6-thioguanine was used for the selection of mutants at hprt locus, and the cell cycle was monitored by flow cytometry. Both carbon beam and X-rays induced cell inactivation, hprt gene mutation and cell cycle G2 block dose-dependently. But carbon beam showed stronger effects as indicated by all three endpoints and the relative biological effectiveness (RBE) was 3.5 for cell killing (at 10% survival level) and 2.9 for mutation induction (at 5 x 10(-5) mutants/ cell level). Melatonin showed protective effects against ionizing radiation in a dose-dependent manner. In terms of cell killing, melatonin only increased the survival level of those samples exposed to 8Gy or larger of X-rays or 6 Gy or larger of carbon beam. In the induction of hprt mutation and G2 block, melatonin reduced such effects induced by carbon beam but not by X-rays. The results suggest that melatonin reduces the direct interaction of particles with cells rather than an indirect interaction. Further studies are required to disclose the underlying mechanisms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Melatonin is a highly conserved molecule that not only exists in animals, but also is present in bacteria, unicellular organisms and in plants. Since melatonin is an antioxidant, in plants melatonin was speculated to protect them from intrinsic and environmental oxidative stress. More importantly, melatonin in edible plants inevitably enters animals and human through feed and food. In this study, more than 100 Chinese medicinal herbs were analyzed using the methods of solid phase extraction and HPLC-FD on-line with MS to determine whether melatonin is present in these commonly used herbs. Melatonin was detected in majority of these plants. Sixty-four of them contain melatonin in excess of 10 ng per gram dry mass. Melatonin levels in several herbs are in excess of 1000 ng/g. It is well known that normal average physiological plasma levels of melatonin are only 10-60 pg/mL. These high level-melatonin containing plants are traditionally used to treat diseases which presumably involve free radical damage. The current study provides new information concerning one potentially effective constituent present in a large number of medicinal herbs. The results suggest that these herbs should be reevaluated in reference to their nutritional and medicinal value. (C) 2003 Elsevier Science Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It has become clear that the last 15-20 years that the immediate effect of a wide range of environmental stresses,and of infection,on vascular plants is to increase the information of reactive oxygen species(ROS) and to impose oxidative stress on the cells.Since 1994,sufficient examples similar responses in a broad range of marine macroalgae have been decribed to show that reactive oxygen metabolism also underlies the mechanisms by which seaweeds respond(and become resistant) to stress and infection.Desiccation,freezing,low temperatures,high light,ultraviolet radiation,and heavy metals all tend to result in a gradual and continued buildup of ROS because photosynthesis is inhibited and excess energy results in the formation of singlet oxygen.The response to other stresses (infection or oligosaccharides which signal that infection is occurring,mechanical stress,hyperosmotic shock) is quite different-a more rapid and intence,but short-lived production of ROS ,discribed as an "oxidative burst"-which is attributed to activation of NADPHoxidases in the plasma membrane.Seaweed species that are able to survive such stresses or resist infection have the capacity to remove the ROS through a high cellular content of antioxidant compounds,or a high activity of antioxidant enzymes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

用蘸根和叶面喷施不同浓度油菜素内酯(BRs)的方法,在人工控制土壤水分条件下,对黄土高原重要造林树种文冠果苗木重要的抗氧化酶活性和抗氧化剂含量变化进行研究。结果表明,用0.05~0.4 mg/L BRs处理文冠果苗木,超氧化物歧化酶(SOD)活性在中度干旱胁迫下较清水对照增加,但差异不显著,重度胁迫下增加显著;在中度和重度胁迫下,各处理文冠果苗木过氧化氢酶(CAT)、过氧化物酶(POD)和抗坏血酸过氧化物酶(APX)活性均较清水对照升高,且差异显著;在中度和重度胁迫下,5个浓度BRs处理对抗坏血酸(ASA)和还原型谷光甘肽(GSH)含量均具显著的增加效应。轻度和重度胁迫下,0.2 mg/L BRs处理对文冠果苗木抗氧化酶活性和抗氧化剂含量的增加效应均最为显著。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel aliphatic polycarbonate from renewable resource was prepared by copolymerization of furfuryl glycidyl ether and CO2 using rare earth ternary catalyst; its number-average molecular weight (M-n) reached 13.3 x 10(4) g/mol. The furfuryl glycidyl ether and CO2 copolymer (PFGEC) was easy to become yellowish at ambient atmosphere due to post polymerization cross-linking reaction oil the furan ring; the gel content was 17.2 wt % after 24 h exposure to air at room temperature. PFGEC could be stabilized by addition of antioxidant 1010 (tetrakis[methylene (3.5-di(tert-butyl)-4-hydroxhydrocinnamate)]methane) in 0.5-3 wt % after copolymerization. The Diels-Alder (DA) reaction between N-phenylmaleimide and the pendant furan ring was also effective for the stabilization of PFGEC by reducing the amount of furan ring and introducing bulky groups into PFGEC. The cyclization degree could reach 72.1% when the molar ratio of N-phenylmaleimide to furan ring was 3: 1, and no gel was observed after 24 h exposure to air. The glass transition temperature (T-g) of PFGEC was 6.8 degrees C, and it increased to 40.3 degrees C after DA reaction (molar ratio of N-phenylmaleimide to furan ring was 3: 1).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

According to the strong application background of bioflavonoid and metal-flavonoid complexes, novel electrospray ionization tandem mass spectrometry (ESI-MSn) was applied to investigate the structure and fragmentation mechanism of transition metal-rutin complexes. In the full-scan mass spectra, different stoichiometric ratios of rutin-metal complexes were found. In the reaction between rutin and Cu, four kinds of complexes with four different stoichiometric ratios were produced. In the reaction between rutin and Zn, Mn(II), and Fe(II), only two kind of complexes with stoichiometric ratios of 1:1 and 1:2 occured. In further tandem mass spectrometric experiments of different rutin-metal complexes, product fragments, came from the neutral loss of the external rhamnose and the internal glucose unit, oligosaccharide chain, aglycone, and small organic molecules. According to the MSn data, we proposed a mechanism for all fragments of the rutin-Cu complex A and the structure of two rutin-Cu complexes, C and D.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Icariin (2-(4'-methoxyl phenyl)-3-rhamnosido-5-hydroxyl-7-glucosido-8-(3'-methyl-2-butyleny"chromanone) is the major component in Herba Epimedii used in traditional Chinese medicine for the treatment of atherosclerosis. This work focuses on the antioxidative effect of icariin on freeradical-induced haemolysis of human erythrocytes, in which the initial free radical derives from the decomposition of 2,2'-azobis(2-amidinopropane hydrochloride) (AAPH) at physiological temperature. To reveal the structure-activity relationship of icariin, the antioxidant effects of two structural analogues of icariin, acacetin (2-(4'-methoxylphenyl)-5,7-dihydroxylchromone) and norwogonin (2-phenyl-5,7,8-trihydroxylchromone), on the same experimental system were examined as well. It was found that all these chromone derivatives (Chm-OHs) dose-dependently protected human erythrocytes against free-radical-induced haemolysis. The order of antioxidative activity was nonvogoni-n > acacetin > icariin by the analysis of the relationship between the concentration of Chm-OHs and the prolongation percentage of the lag time of haemolysis (PP%). It was also proved that the phenyl hydroxyl group attached to the chromone ring at 7-position cannot trap the free radical- On the contrary, phenyl hydroxyl groups at the 5- and 8-position in nonvogonin made it a significant antioxidant in AAPH-induced haemolysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thermooxidative degradtion of ethylene oxide and tetra-hydrofuran (EO-THF) co-polyether has been studied by electron spin resonance (ESR), Fourier transform infrared (FT-IR) and nuclear magnetic resonance (NMR) spectroscopy. The initial degradation site was found to be at the a-carbon of the ether bond. Two free radicals which derived from dehydrogenation and oxygen addition were successfully detected by spin-trapping technique which used alpha -phenyl-N-tert-butyl nitrone(PBN) as spin trap. Both FT-IR and NMR have been used to follow structural changes of the copolyether during degradation. Nearly 20 product fragments including formate, carbonate, methyl, alcohol, methylene-dioxy, hydroperoxide and semiformal have been characterized by D-1 and D-2 NMR. The thermooxidtion of co-polyether preferred to occur on the THF units especially at the alternating linkage of EO and THF. Antioxidant (BHT) not only retarded the thermooxidation but also modified the degradation products with less ester and methylene-dioxy groups hut more hydroxyl and methyl groups.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The chemiluminescence (CL) emission from three kinds of polyethylene, HDPE, LLDPE and LDPE, which had been exposed to 80 kGy dose from Co-60 in both air and nitrogen, has been examined. CL measurement was done under both nitrogen and oxygen atmosphere. The results show that the CL emission from irradiated samples does not result from irradiation itself, but from the oxidation reactions occurring during and after irradiation. Addition of 1 phr of an antioxidant, Irganox 1010, can effectively inhibit the radiation induced oxidation in LLDPE and LDPE. In the case of HDPE, however, it was found that pure HDPE has the best resistance to radiation-induced oxidation of the polymers examined in this work. However, incorporation of Irganox 1010 was found to have not only a stabilizing effect against radiation induced oxidation, but also to promote the oxidation in some cases.