926 resultados para Oilseed crop


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The black rat (Rattus rattus) has been shown to be the primary species responsible for causing significant crop losses within the Australian macadamia industry. This species success within macadamia orchards is directly related to the flexibility expressed in its foraging behaviour. In this paper a conceptual foraging model is presented which proposes that the utilisation of resources by rodents within various components of the system is related not only to their relative abundance, but also to predator avoidance behaviour. Nut removal from high predation risk habitats during periods of low resource abundance in low risk compartments of the system is considered an essential behaviour that allows high rodent densities to be maintained throughout the year.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bananas are susceptible to a diverse range of biotic and abiotic stresses, many of which cause serious production constraints worldwide. One of the most destructive banana diseases is Fusarium wilt caused by the soil-borne fungus, Fusarium oxysporum f. sp. cubense (Foc). No effective control strategy currently exists for this disease which threatens global banana production. Although disease resistance exists in some wild bananas, attempts to introduce resistance into commercially acceptable bananas by conventional breeding have been hampered by low fertility, long generation times and association of poor agronomical traits with resistance genes. With the advent of reliable banana transformation protocols, molecular breeding is now regarded as a viable alternative strategy to generate disease-resistant banana plants. Recently, a novel strategy involving the expression of anti-apoptosis genes in plants was shown to result in resistance against several necrotrophic fungi. Further, the transgenic plants showed increased resistance to a range of abiotic stresses. In this thesis, the use of anti-apoptosis genes to generate transgenic banana plants with resistance to Fusarium wilt was investigated. Since water stress is an important abiotic constraint to banana production, the resistance of the transgenic plants to water stress was also examined. Embryogenic cell suspensions (ECS) of two commercially important banana cultivars, Grand Naine (GN) and Lady Finger (LF), were transformed using Agrobacterium with the anti-apoptosis genes, Bcl-xL, Bcl-xL G138A, Ced-9 and Bcl- 2 3’ UTR. An interesting, and potentially important, outcome was that the use of anti-apoptosis genes resulted in up to a 50-fold increase in Agrobacterium-mediated transformation efficiency of both LF and GN cells over vector controls. Regenerated plants were subjected to a complete molecular characterisation in order to detect the presence of the transgene (PCR), transcript (RT-PCR) and gene product (Western blot) and to determine the gene copy number (Southern blot). A total of 36 independently-transformed GN lines (8 x Bcl-xL, 5 x Bcl-xL G138A, 15 x Ced-9 and 8 x Bcl-2 3’ UTR) and 41 independently-transformed LF lines (8 x Bcl-xL, 7 x BclxL G138A, 13 x Ced-9 and 13 x Bcl-2 3’ UTR) were identified. The 41 transgenic LF lines were multiplied and clones from each line were acclimatised and grown under glasshouse conditions for 8 weeks to allow monitoring for phenotypic abnormalities. Plants derived from 3 x Bcl-xL, 2 x Ced-9 and 5 x Bcl-2 3’ UTR lines displayed a variety of aberrant phenotypes. However, all but one of these abnormalities were off-types commonly observed in tissue-cultured, non-transgenic banana plants and were therefore unlikely to be transgene-related. Prior to determining the resistance of the transgenic plants to Foc race 1, the apoptotic effects of the fungus on both wild-type and Bcl-2 3’ UTR-transgenic LF banana cells were investigated using rapid in vitro root assays. The results from these assays showed that apoptotic-like cell death was elicited in wild-type banana root cells as early as 6 hours post-exposure to fungal spores. In contrast, these effects were attenuated in the root cells of Bcl-2 3’ UTR-transgenic lines that were exposed to fungal spores. Thirty eight of the 41 transgenic LF lines were subsequently assessed for resistance to Foc race 1 in small-plant glasshouse bioassays. To overcome inconsistencies in rating the internal (vascular discolouration) disease symptoms, a MatLab-based computer program was developed to accurately and reliably assess the level of vascular discolouration in banana corms. Of the transgenic LF banana lines challenged with Foc race 1, 2 x Bcl-xL, 3 x Ced-9, 2 x Bcl-2 3’ UTR and 1 x Bcl-xL G138A-transgenic line were found to show significantly less external and internal symptoms than wild-type LF banana plants used as susceptible controls at 12 weeks post-inoculation. Of these lines, Bcl-2 3’ UTR-transgenic line #6 appeared most resistant, displaying very mild symptoms similar to the wild-type Cavendish banana plants that were included as resistant controls. This line remained resistant for up to 23 weeks post-inoculation. Since anti-apoptosis genes have been shown to confer resistance to various abiotic stresses in other crops, the ability of these genes to confer resistance against water stress in banana was also investigated. Clonal plants derived from each of the 38 transgenic LF banana plants were subjected to water stress for a total of 32 days. Several different lines of transgenic plants transformed with either Bcl-xL, Bcl-xL G138A, Ced-9 or Bcl-2 3’ UTR showed a delay in visual water stress symptoms compared with the wild-type control plants. These plants all began producing new growth from the pseudostem following daily rewatering for one month. In an attempt to determine whether the protective effect of anti-apoptosis genes in transgenic banana plants was linked with reactive oxygen species (ROS)-associated programmed cell death (PCD), the effect of the chloroplast-targeting, ROS-inducing herbicide, Paraquat, on wild-type and transgenic LF was investigated. When leaf discs from wild-type LF banana plants were exposed to 10 ìM Paraquat, complete decolourisation occurred after 48 hours which was confirmed to be associated with cell death and ROS production by trypan blue and 3,3-diaminobenzidine (DAB) staining, respectively. When leaf discs from the transgenic lines were exposed to Paraquat, those derived from some lines showed a delay in decolourisation, suggesting only a weak protective effect from the transgenes. Finally, the protective effect of anti-apoptosis genes against juglone, a ROS-inducing phytotoxin produced by the causal agent of black Sigatoka, Mycosphaerella fijiensis, was investigated. When leaf discs from wild-type LF banana plants were exposed to 25 ppm juglone, complete decolourisation occurred after 48 hours which was again confirmed to be associated with cell death and ROS production by trypan blue and DAB staining, respectively. Further, TdT-mediated dUTP nick-end labelling (TUNEL) assays on these discs suggested that the cell death was apoptotic. When leaf discs from the transgenic lines were exposed to juglone, discs from some lines showed a clear delay in decolourisation, suggesting a protective effect. Whether these plants are resistant to black Sigatoka is unknown and will require future glasshouse and field trials. The work presented in this thesis provides the first report of the use of anti-apoptosis genes as a strategy to confer resistance to Fusarium wilt and water stress in a nongraminaceous monocot, banana. Such a strategy may be exploited to generate resistance to necrotrophic pathogens and abiotic stresses in other economically important crop plants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Taro (Colocasia esculenta L. Schott) is an important crop worldwide but is of particular significance in many Pacific Island countries where it forms part of the staple diet and serves as an export commodity. Escalating pest and disease problems are jeopardizing taro production with serious implications to food security and trade. Biotechnological approaches to addressing pest and disease problems, such as somatic embryogenesis and transgenesis, are potentially viable options. However, despite biotechnological advancements in higher profile agronomic crops, such progress in relation to Colocasia esculenta var. esculenta has been slow. This paper reviews taro biology, highlights the cultural and economic significance of taro in Pacific Island countries and discusses the progress made towards the molecular breeding of this important crop to date.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Most tropical fruit flies only lay into mature fruit, but a small number can also oviposit into unripe fruit. Little is known about the link between adult oviposition preference and offspring performance in such situations. In this study we examine the influence of different ripening stages of two mango Mangifera indica L. (Anacardiaceae) varieties on the preference and performance of the Oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), a fly known to be able to develop in unripe fruit. Work was carried out as a series of laboratory-based choice and no-choice oviposition experiments and larval growth trials. In oviposition choice trials, female B. dorsalis demonstrated a preference for ripe fruit of mango variety Namdorkmai over variety Oakrong, but generally the dependent variable most influencing oviposition results was fruit ripening stage. Ripe and fully-ripe mangoes were most preferred for oviposition by B. dorsalis. In contrast, unripe mango was infrequently used by ovipositing females, particularly in choice trials. Consistent with the results of oviposition preference, ripe and fully-ripe mangoes were also best for offspring survival, with a higher percentage of larval survival to pupation and shorter development times in comparison to unripe mango. Changes in Total Soluble Solids, TSS, and skin toughness correlate with changing host use across the ripening stages. Regardless of the mango variety or ripeness stage, B. dorsalis had difficulty penetrating the pericarp of our experimental fruit. Larval survival was also often poor. We discuss the possibility that there may be differences in the ability of laboratory and wild flies to penetrate fruit for oviposition, or that in the field flies more regularly utilize natural fruit wounds as oviposition sites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract A field survey for natural enemies of Paropsis atomaria was conducted at two south-eastern Queensland Eucalyptus cloeziana plantation sites during 2004–2005. Primary egg and larval parasitoids and associated hyperparasitoids were identified to genus or species, and parasitism rates were determined throughout the season. Predators were identified to family level but their impact was not quantified. P. atomaria adults were also examined as potential hosts for parasitic mites and nematodes. An undescribed species of Neopolycystus (Pteromalidae) was the major primary egg parasitoid species reared from egg batches, parasitising half of all egg batches collected. Three hyperparasitoid species (Baeoanusia albifunicle (Encyrtidae), Neblatticida sp. (Encyrtidae) and Aphaneromella sp. (Platygasteridae) were present, representing around one-quarter to one-third of all emergent wasps; this is the first host association record for Neopolycystus–B. albifunicle. In contrast to populations of P. atomaria from the Australian Capital Territory, primary larval parasitism was very low, around 1%, and attributable only to the tachinid flies Anagonia sp. and Paropsivora sp. However, the presence of the sit-and-wait larval hyperparasitoid, Perilampus sp. (Perilampidae) was high, emerging from around 17% of tachinid pupae, with planidia infesting a further 40% of unparasitised hosts. Three species of podapolipid mites parasitised sexually mature P. atomaria adults, while no nematodes were found in this study. Spiders were the most common predators and their abundance was positively correlated with P. atomaria adult and egg numbers. Although natural enemy species composition was identical between our two study sites, significant differences in abundance and frequency were found between sites

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract Neopolycystus sp. is the only primary egg parasitoid associated with the pest beetle Paropsis atomaria in subtropical eucalypt plantations, but its impact on its host populations is unknown. The simplified ecosystem represented by the plantation habitat, lack of interspecific competition for host and parasitoid, and the multivoltinism of the host population makes this an ideal system for quantifying the direct and indirect effects of egg parasitism, and hence, effects on host population dynamics. Within-, between- and overall-egg-batch parasitism rates were determined at three field sites over two field seasons, and up to seven host generations. The effect of exposure time (egg batch age), host density proximity to native forest and water sources on egg parasitism rates was also tested. Neopolycystus sp. exerts a significant influence on P. atomaria populations in Eucalyptus cloeziana. plantations in south-eastern Queensland, causing the direct (13%) and indirect (15%) mortality of almost one-third of all eggs in the field. Across seasons and generations, 45% of egg batches were parasitised, with a within-batch parasitism rate of around 30%. Between-batch parasitism increased up to 5–6 days after oviposition in the field, although within-batch parasitism rates generally did not. However, there were few apparent patterns to egg parasitism, with rates often varying significantly between sites and seasons.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Paropsis atomaria is a recently emerged pest of eucalypt plantations in subtropical Australia. Its broad host range of at least 20 eucalypt species and wide geographical distribution provides it the potential to become a serious forestry pest both within Australia and, if accidentally introduced, overseas. Although populations of P. atomaria are genetically similar throughout its range, population dynamics differ between regions. Here, we determine temperature-dependent developmental requirements using beetles sourced from temperate and subtropical zones by calculating lower temperature thresholds, temperature-induced mortality, and day-degree requirements. We combine these data with field mortality estimates of immature life stages to produce a cohort-based model, ParopSys, using DYMEX™ that accurately predicts the timing, duration, and relative abundance of life stages in the field and number of generations in a spring–autumn (September–May) field season. Voltinism was identified as a seasonally plastic trait dependent upon environmental conditions, with two generations observed and predicted in the Australian Capital Territory, and up to four in Queensland. Lower temperature thresholds for development ranged between 4 and 9 °C, and overall development rates did not differ according to beetle origin. Total immature development time (egg–adult) was approximately 769.2 ± S.E. 127.8 DD above a lower temperature threshold of 6.4 ± S.E. 2.6 °C. ParopSys provides a basic tool enabling forest managers to use the number of generations and seasonal fluctuations in abundance of damaging life stages to estimate the pest risk of P. atomaria prior to plantation establishment, and predict the occurrence and duration of damaging life stages in the field. Additionally, by using local climatic data the pest potential of P. atomaria can be estimated to predict the risk of it establishing if accidentally introduced overseas. Improvements to ParopSys’ capability and complexity can be made as more biological data become available.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rodenticide use in agriculture can lead to the secondary poisoning of avian predators. Currently the Australian sugarcane industry has two rodenticides, Racumin® and Rattoff®, available for in-crop use but, like many agricultural industries, it lacks an ecologically-based method of determining the potential secondary poisoning risk the use of these rodenticides poses to avian predators. The material presented in this thesis addresses this by: a. determining where predator/prey interactions take place in sugar producing districts; b. quantifying the amount of rodenticide available to avian predators and the probability of encounter; and c. developing a stochastic model that allows secondary poisoning risk under various rodenticide application scenarios to be investigated. Results demonstrate that predator/prey interactions are highly constrained by environmental structure. Rodents used crops that provided high levels of canopy cover and therefore predator protection and poorly utilised open canopy areas. In contrast, raptors over-utilised areas with low canopy cover and low rodent densities, but which provided high accessibility to prey. Given this pattern of habitat use, and that industry baiting protocols preclude rodenticide application in open canopy crops, these results indicate that secondary poisoning can only occur if poisoned rodents leave closed canopy crops and become available for predation in open canopy areas. Results further demonstrate that after in-crop rodenticide application, only a small proportion of rodents available in open areas are poisoned and that these rodents carry low levels of toxicant. Coupled with the low level of rodenticide use in the sugar industry, the high toxic threshold raptors have to these toxicants and the low probability of encountering poisoned rodents, results indicate that the risk of secondary poisoning events occurring is minimal. A stochastic model was developed to investigate the effect of manipulating factors that might influence secondary poisoning hazard in a sugarcane agro-ecosystem. These simulations further suggest that in all but extreme scenarios, the risk of secondary poisoning is also minimal. Collectively, these studies demonstrate that secondary poisoning of avian predators associated with the use of the currently available rodenticides in Australian sugar producing districts is minimal. Further, the ecologically-based method of assessing secondary poisoning risk developed in this thesis has broader applications in other agricultural systems where rodenticide use may pose risks to avian predators.