935 resultados para genotyping


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite elevated incidence and recurrence rates for Primary Spontaneous Pneumothorax (PSP), little is known about its etiology, and the genetics of idiopathic PSP remains unexplored. To identify genetic variants contributing to sporadic PSP risk, we conducted the first PSP genome-wide association study. Two replicate pools of 92 Portuguese PSP cases and of 129 age- and sex-matched controls were allelotyped in triplicate on the Affymetrix Human SNP Array 6.0 arrays. Markers passing quality control were ranked by relative allele score difference between cases and controls (|RASdiff|), by a novel cluster method and by a combined Z-test. 101 single nucleotide polymorphisms (SNPs) were selected using these three approaches for technical validation by individual genotyping in the discovery dataset. 87 out of 94 successfully tested SNPs were nominally associated in the discovery dataset. Replication of the 87 technically validated SNPs was then carried out in an independent replication dataset of 100 Portuguese cases and 425 controls. The intergenic rs4733649 SNP in chromosome 8 (between LINC00824 and LINC00977) was associated with PSP in the discovery (P = 4.07E-03, ORC[95% CI] = 1.88[1.22-2.89]), replication (P = 1.50E-02, ORC[95% CI] = 1.50[1.08-2.09]) and combined datasets (P = 8.61E-05, ORC[95% CI] = 1.65[1.29-2.13]). This study identified for the first time one genetic risk factor for sporadic PSP, but future studies are warranted to further confirm this finding in other populations and uncover its functional role in PSP pathogenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thesis (Master's)--University of Washington, 2016-06

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thesis (Master's)--University of Washington, 2016-08

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Familial amyloid polyneuropathy (FAP) or paramiloidosis is an autosomal dominant neurodegenerative disease with onset on adult age that is characterized by mutated protein deposition in the form of amyloid substance. FAP is due to a point alteration in the transthyretin (TTR) gene and until now more than 100 amyloidogenic mutations have been described in TTR gene. FAP shows a wide variation in age-at-onset (AO) (19-82 years, in Portuguese cases) and the V30M mutation often runs through several generation of asymptomatic carriers, before expressing in a proband, but the protective effect disappear in a single generation, with offspring of late-onset cases having early onset. V30M mutation does not explain alone the symptoms and AO variability of the disease observed in the same family. Our aim in this study was to identify genetic factors associated with AO variability and reduced penetrance which can have important clinical implications. To accomplish this we genotyped 230 individuals, using a directautomated sequencing approach in order to identify possible genetic modifiers within the TTR locus. After genotyping, we assessed a putative association of the SNPs found with AO and an intensive in silico analysis was performed in order to understand a possible regulation of gene expression. Although we did not find any significant association between SNPs and AO, we found very interesting and unreported results in the in silico analysis since we observed some alterations in the mechanism of splicing, transcription factors binding and miRNAs binding. All of these mechanisms when altered can lead to dysregulation of gene expression, which can have an impact in AO and phenotypic variability. These putative mechanisms of regulation of gene expression within the TTR gene could be used in the future as potential therapeutical targets, and could improve genetic counselling and follow-up of mutation carriers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Congenital adrenal hyperplasia (CAH) is an autosomal recessive disorder caused by defects in one of several steroidogenic enzymes involved in the synthesis of cortisol from cholesterol in the adrenal glands. More than 90% of cases are caused by 21-hydroxylase deficiency, and the severity of the resulting clinical symptoms varies according to the level of 21-hydroxylase activity. 21-Hydroxylase deficiency is usually caused by mutations in the CYP21A2 gene, which is located on the RCCX module, a chromosomal region highly prone to genetic recombination events that can result in a wide variety of complex rearrangements, such as gene duplications, gross deletions and gene conversions of variable extensions. Molecular genotyping of CYP21A2 and the RCCX module has proved useful for a more accurate diagnosis of the disease, and prenatal diagnosis. This article summarises the clinical features of 21-hydroxylase deficiency, explains current understanding of the disease at the molecular level, and highlights recent developments, particularly in diagnosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The first part of the thesis describes a new patterning technique--microfluidic contact printing--that combines several of the desirable aspects of microcontact printing and microfluidic patterning and addresses some of their important limitations through the integration of a track-etched polycarbonate (PCTE) membrane. Using this technique, biomolecules (e.g., peptides, polysaccharides, and proteins) were printed in high fidelity on a receptor modified polyacrylamide hydrogel substrate. The patterns obtained can be controlled through modifications of channel design and secondary programming via selective membrane wetting. The protocols support the printing of multiple reagents without registration steps and fast recycle times. The second part describes a non-enzymatic, isothermal method to discriminate single nucleotide polymorphisms (SNPs). SNP discrimination using alkaline dehybridization has long been neglected because the pH range in which thermodynamic discrimination can be done is quite narrow. We found, however, that SNPs can be discriminated by the kinetic differences exhibited in the dehybridization of PM and MM DNA duplexes in an alkaline solution using fluorescence microscopy. We combined this method with multifunctional encoded hydrogel particle array (fabricated by stop-flow lithography) to achieve fast kinetics and high versatility. This approach may serve as an effective alternative to temperature-based method for analyzing unamplified genomic DNA in point-of-care diagnostic.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite elevated incidence and recurrence rates for Primary Spontaneous Pneumothorax (PSP), little is known about its etiology, and the genetics of idiopathic PSP remains unexplored. To identify genetic variants contributing to sporadic PSP risk, we conducted the first PSP genome-wide association study. Two replicate pools of 92 Portuguese PSP cases and of 129 age- and sex-matched controls were allelotyped in triplicate on the Affymetrix Human SNP Array 6.0 arrays. Markers passing quality control were ranked by relative allele score difference between cases and controls (|RASdiff|), by a novel cluster method and by a combined Z-test. 101 single nucleotide polymorphisms (SNPs) were selected using these three approaches for technical validation by individual genotyping in the discovery dataset. 87 out of 94 successfully tested SNPs were nominally associated in the discovery dataset. Replication of the 87 technically validated SNPs was then carried out in an independent replication dataset of 100 Portuguese cases and 425 controls. The intergenic rs4733649 SNP in chromosome 8 (between LINC00824 and LINC00977) was associated with PSP in the discovery (P = 4.07E-03, ORC[95% CI] = 1.88[1.22-2.89]), replication (P = 1.50E-02, ORC[95% CI] = 1.50[1.08-2.09]) and combined datasets (P = 8.61E-05, ORC[95% CI] = 1.65[1.29-2.13]). This study identified for the first time one genetic risk factor for sporadic PSP, but future studies are warranted to further confirm this finding in other populations and uncover its functional role in PSP pathogenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An accurate amplified fragment length polymorphism (AFLP) method, including three primer sets for the selective amplification step, was developed to display the phylogenetic position of Photobacterium isolates collected from salmon products. This method was efficient for discriminating the three species Photobacterium phosphoreum, Photobacterium iliopiscarium and Photobacterium kishitanii, until now indistinctly gathered in the Photobacterium phosphoreum species group known to be strongly responsible for seafood spoilage. The AFLP fingerprints enabled the isolates to be separated into two main clusters that, according to the type strains, were assigned to the two species P. phosphoreum and P. iliopiscarium. P. kishitanii was not found in the collection. The accuracy of the method was validated by using gyrB-gene sequencing and luxA-gene PCR amplification, which confirmed the species delineation. Most of the isolates of each species were clonally distinct and even those that were isolated from the same source showed some diversity. Moreover, this AFLP method may be an excellent tool for genotyping isolates in bacterial communities and for clarifying our knowledge of the role of the different members of the Photobacterium species group in seafood spoilage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Major diseases, including Fusarium wilt tropical race 4, threaten banana production systems worldwide. New sources of genetic resistance are considered necessary in the fight against such diseases. The triangular region of Indonesia taking in Sulawesi, the Maluku Islands and Lesser Sunda Islands was prioritized by the Global Musa Genetic Resources Network, MusaNet for exploration and collecting. It is just east of the Wallace Line, which is recognized as a transition zone for flora in southeast Asia, and had been little explored. Bioversity International funded a team of scientists from Indonesia and Australia to make collecting missions in the triangle in October 2012 and February 2013. Suckers and seeds of 35 promising new accessions were collected. About 90% of these are either wild species or diploid cultivars of more direct use to breeding programs. These were morphologically characterized during the collecting missions and included a set of photographs recommended by Bioversitys Taxonomic Advisory Group. Cigar leaf samples were also collected and sent as fresh samples to the International Banana Genotyping Centre in the Czech Republic. Ploidy and DNA (SSR) genotyping determinations from these samples have been invaluable in quickly interpreting and better appreciating what has been discovered. The new accessions have been grown on at Solok field collection, West Sumatra and will be made available by Indonesia to the international community, including breeding programs, for evaluation and utilization. Information on wild Eumusa prompts a rethinking of the phytogeography of Musa acuminata. The variation within the Australimusa species M. lolodensis highlights the need for broader study of this Musa section. French Plantain-like edible AAs and prospects for the generation of African plantains in the region were identified. The mission indicated existence of local edible ABs in eastern Indonesia in association with balbisiana hybrids origins in the region. Further explorations in the region should add to Musa diversity knowledge.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The development of molecular markers for genomic studies in Mangifera indica (mango) will allow marker-assisted selection and identification of genetically diverse germplasm, greatly aiding mango breeding programs. We report here our identification of thousands of unambiguous molecular markers that can be easily assayed across genotypes of the species. With origin centered in Southeast Asia, mangos are grown throughout the tropics and subtropics as a nutritious fruit that exhibits remarkable intraspecific phenotypic diversity. With the goal of building a high density genetic map, we have undertaken discovery of sequence variation in expressed genes across a broad range of mango cultivars. A transcriptome sequence reference was built de novo from extensive sequencing and assembly of RNA from cultivar 'Tommy Atkins'. Single nucleotide polymorphisms (SNPs) in protein coding transcripts were determined from alignment of RNA reads from 24 mango cultivars of diverse origins: 'Amin Abrahimpur' (India), 'Aroemanis' (Indonesia), 'Burma' (Burma), 'CAC' (Hawaii), 'Duncan' (Florida), 'Edward' (Florida), 'Everbearing' (Florida), 'Gary' (Florida), 'Hodson' (Florida), 'Itamaraca' (Brazil), 'Jakarata' (Florida), 'Long' (Jamaica), 'M. Casturi Purple' (Borneo), 'Malindi' (Kenya), 'Mulgoba' (India), 'Neelum' (India), 'Peach' (unknown), 'Prieto' (Cuba), 'Sandersha' (India), 'Tete Nene' (Puerto Rico), 'Thai Everbearing' (Thailand), 'Toledo' (Cuba), 'Tommy Atkins' (Florida) and 'Turpentine' (West Indies). SNPs in a selected subset of protein coding transcripts are currently being converted into Fluidigm assays for genotyping of mapping populations and germplasm collections. Using an alternate approach, SNPs (144) discovered by sequencing of candidate genes in 'Kensington Pride' have already been converted and used for genotyping.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hypertension is a major risk factor for cardiovascular disease and mortality, and a growing global public health concern, with up to one-third of the world’s population affected. Despite the vast amount of evidence for the benefits of blood pressure (BP) lowering accumulated to date, elevated BP is still the leading risk factor for disease and disability worldwide. It is well established that hypertension and BP are common complex traits, where multiple genetic and environmental factors contribute to BP variation. Furthermore, family and twin studies confirmed the genetic component of BP, with a heritability estimate in the range of 30-50%. Contemporary genomic tools enabling the genotyping of millions of genetic variants across the human genome in an efficient, reliable, and cost-effective manner, has transformed hypertension genetics research. This is accompanied by the presence of international consortia that have offered unprecedentedly large sample sizes for genome-wide association studies (GWASs). While GWAS for hypertension and BP have identified more than 60 loci, variants in these loci are associated with modest effects on BP and in aggregate can explain less than 3% of the variance in BP. The aims of this thesis are to study the genetic and environmental factors that influence BP and hypertension traits in the Scottish population, by performing several genetic epidemiological analyses. In the first part of this thesis, it aims to study the burden of hypertension in the Scottish population, along with assessing the familial aggregation and heritialbity of BP and hypertension traits. In the second part, it aims to validate the association of common SNPs reported in the large GWAS and to estimate the variance explained by these variants. In this thesis, comprehensive genetic epidemiology analyses were performed on Generation Scotland: Scottish Family Health Study (GS:SFHS), one of the largest population-based family design studies. The availability of clinical, biological samples, self-reported information, and medical records for study participants has allowed several assessments to be performed to evaluate factors that influence BP variation in the Scottish population. Of the 20,753 subjects genotyped in the study, a total of 18,470 individuals (grouped into 7,025 extended families) passed the stringent quality control (QC) criteria and were available for all subsequent analysis. Based on the BP-lowering treatment exposure sources, subjects were further classified into two groups. First, subjects with both a self-reported medications (SRMs) history and electronic-prescription records (EPRs; n =12,347); second, all the subjects with at least one medication history source (n =18,470). In the first group, the analysis showed a good concordance between SRMs and EPRs (kappa =71%), indicating that SRMs can be used as a surrogate to assess the exposure to BP-lowering medication in GS:SFHS participants. Although both sources suffer from some limitations, SRMs can be considered the best available source to estimate the drug exposure history in those without EPRs. The prevalence of hypertension was 40.8% with higher prevalence in men (46.3%) compared to women (35.8%). The prevalence of awareness, treatment and controlled hypertension as defined by the study definition were 25.3%, 31.2%, and 54.3%, respectively. These findings are lower than similar reported studies in other populations, with the exception of controlled hypertension prevalence, which can be considered better than other populations. Odds of hypertension were higher in men, obese or overweight individuals, people with a parental history of hypertension, and those living in the most deprived area of Scotland. On the other hand, deprivation was associated with higher odds of treatment, awareness and controlled hypertension, suggesting that people living in the most deprived area may have been receiving better quality of care, or have higher comorbidity levels requiring greater engagement with doctors. These findings highlight the need for further work to improve hypertension management in Scotland. The family design of GS:SFHS has allowed family-based analysis to be performed to assess the familial aggregation and heritability of BP and hypertension traits. The familial correlation of BP traits ranged from 0.07 to 0.20, and from 0.18 to 0.34 for parent-offspring pairs and sibling pairs, respectively. A higher correlation of BP traits was observed among first-degree relatives than other types of relative pairs. A variance-component model that was adjusted for sex, body mass index (BMI), age, and age-squared was used to estimate heritability of BP traits, which ranged from 24% to 32% with pulse pressure (PP) having the lowest estimates. The genetic correlation between BP traits showed a high correlation between systolic (SBP), diastolic (DBP) and mean arterial pressure (MAP) (G: 81% to 94%), but lower correlations with PP (G: 22% to 78%). The sibling recurrence risk ratio (λS) for hypertension and treatment were calculated as 1.60 and 2.04 respectively. These findings confirm the genetic components of BP traits in GS:SFHS, and justify further work to investigate genetic determinants of BP. Genetic variants reported in the recent large GWAS of BP traits were selected for genotyping in GS:SFHS using a custom designed TaqMan® OpenArray®. The genotyping plate included 44 single nucleotide polymorphisms (SNPs) that have been previously reported to be associated with BP or hypertension at genome-wide significance level. A linear mixed model that is adjusted for age, age-squared, sex, and BMI was used to test for the association between the genetic variants and BP traits. Of the 43 variants that passed the QC, 11 variants showed statistically significant association with at least one BP trait. The phenotypic variance explained by these variant for the four BP traits were 1.4%, 1.5%, 1.6%, and 0.8% for SBP, DBP, MAP, and PP, respectively. The association of genetic risk score (GRS) that were constructed from selected variants has showed a positive association with BP level and hypertension prevalence, with an average effect of one mmHg increase with each 0.80 unit increases in the GRS across the different BP traits. The impact of BP-lowering medication on the genetic association study for BP traits has been established, with typical practice of adding a fixed value (i.e. 15/10 mmHg) to the measured BP values to adjust for BP treatment. Using the subset of participants with the two treatment exposure sources (i.e. SRMs and EPRs), the influence of using either source to justify the addition of fixed values in SNP association signal was analysed. BP phenotypes derived from EPRs were considered the true phenotypes, and those derived from SRMs were considered less accurate, with some phenotypic noise. Comparing SNPs association signals between the four BP traits in the two model derived from the different adjustments showed that MAP was the least impacted by the phenotypic noise. This was suggested by identifying the same overlapped significant SNPs for the two models in the case of MAP, while other BP traits had some discrepancy between the two sources

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lipids can modulate the risk of developing sporadic colorectal adenocarcinoma (SCA), since alterations into lipid metabolism and transport pathways influence directly cholesterol and lipids absorption by colonic cells and indirectly reactive oxygen species (ROS) synthesis in rectum cells due to lipid accumulation. Lipid metabolism is regulated by several proteins APOA1, APOB, APOC3, APOE, CETP, NPY, PON1 and PPARG that could influence both metabolism and transport processes. Is been reported that several common single-nucleotide polymorphisms (SNPs) in these genes could influence their function and/or expression, changing lipid metabolism balance. Thus, genetic changes in those genes can influence SCA development, once the majority of them were never studied in this disease. Furthermore, there are contradictory results between some studied polymorphisms and SCA risk. Thus, the aim of this study was to explore and describe lipid metabolism-associated genes common polymorphisms (APOA1 -75 G>A; APOB R3500Q; APOC3 C3175G, APOC3 T3206G; APOE Cys112/158Arg; CETP G279A, CETP R451Q; NPY Leu7Pro; PON1 Q192R; PPARG Pro12Ala) status among SCA, and their relationship with SCA risk. Genotyping of common lipid metabolism genes polymorphisms (APOA1 75 G>A; APOB R3500Q; APOC3 C3175G, APOC3 T3206G; APOE Cys112/158Arg; CETP G279A, CETP R451Q; NPY Leu7Pro; PON1 Q192R; PPARG Pro12Ala) were done by PCR-SSP techniques, from formalin-fixed and paraffin-embedded biopsies of 100 healthy individuals and 68 SCA subjects. Mutant genotypes of APOA1 -75AA (32% vs 12%; p=0.001; OR=3.51; 95% CI 1.59-7.72); APOB 3500AA (7% vs 0%; p=0.01); APOC3 3175GG (19% vs 2%; p=0.0002; OR=11.58; 95% CI 2.52-53.22), APOC3 3206GG (19% vs 0%; p<0.0001); CETP 279AA (12% vs 1%; p=0.003; OR=13.20; 95% CI 1.61-108.17), CETP 451AA (16% vs 0%; p<0.0001); NPY 7CC (15% vs 0%; p<0.0001); PPARG 12GG (10% vs 0%; p=0.001); and heterozygote genotype PON1 192AG (56% vs 22%; p<0.0001; OR=4.49; 95% CI 2.298.80) were found associated with SCA prevalence. While, APOE E4/E4 (0% vs 8%; p=0.02) mutant haplotype seemed to have a protective effect on SCA. Moreover, it also been founded differences between APOB 3500GA, APOC3 3206TG, CETP 279AA genotypes and PPARG 12Ala allele prevalence and tissue localization (colon vs rectum). These findings suggest a positive association between most of common lipid metabolism genes polymorphisms studied and SCA prevalence. Dysregulation of APOA1, APOB, APOC3, CETP, NPY, PON1 and PPARG genes could be associated with lower cholesterol plasma levels and increase ROS among colon and rectum mucosa. Furthermore, these results also support the hypothesis that CRC is related with intestinal lipid absorption decrease and secondary bile acids production increase. Moreover, the polymorphisms studied may play an important role as biomarkers to SCA susceptibility.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lipids can modulate the risk of developing sporadic colorectal adenocarcinoma (SCA), since alterations into lipid metabolism and transport pathways influence directly cholesterol and lipids absorption by colonic cells and indirectly reactive oxygen species (ROS) synthesis in rectum cells due to lipid accumulation. Lipid metabolism is regulated by several proteins APOA1, APOB, APOC3, APOE, CETP, NPY, PON1 and PPARG that could influence both metabolism and transport processes. Is been reported that several common single-nucleotide polymorphisms (SNPs) in these genes could influence their function and/or expression, changing lipid metabolism balance. Thus, genetic changes in those genes can influence SCA development, once the majority of them were never studied in this disease. Furthermore, there are contradictory results between some studied polymorphisms and SCA risk. Thus, the aim of this study was to explore and describe lipid metabolism-associated genes common polymorphisms (APOA1 -75 G>A; APOB R3500Q; APOC3 C3175G, APOC3 T3206G; APOE Cys112/158Arg; CETP G279A, CETP R451Q; NPY Leu7Pro; PON1 Q192R; PPARG Pro12Ala) status among SCA, and their relationship with SCA risk. Genotyping of common lipid metabolism genes polymorphisms (APOA1 75 G>A; APOB R3500Q; APOC3 C3175G, APOC3 T3206G; APOE Cys112/158Arg; CETP G279A, CETP R451Q; NPY Leu7Pro; PON1 Q192R; PPARG Pro12Ala) were done by PCR-SSP techniques, from formalin-fixed and paraffin-embedded biopsies of 100 healthy individuals and 68 SCA subjects. Mutant genotypes of APOA1 -75AA (32% vs 12%; p=0.001; OR=3.51; 95% CI 1.59-7.72); APOB 3500AA (7% vs 0%; p=0.01); APOC3 3175GG (19% vs 2%; p=0.0002; OR=11.58; 95% CI 2.52-53.22), APOC3 3206GG (19% vs 0%; p<0.0001); CETP 279AA (12% vs 1%; p=0.003; OR=13.20; 95% CI 1.61-108.17), CETP 451AA (16% vs 0%; p<0.0001); NPY 7CC (15% vs 0%; p<0.0001); PPARG 12GG (10% vs 0%; p=0.001); and heterozygote genotype PON1 192AG (56% vs 22%; p<0.0001; OR=4.49; 95% CI 2.298.80) were found associated with SCA prevalence. While, APOE E4/E4 (0% vs 8%; p=0.02) mutant haplotype seemed to have a protective effect on SCA. Moreover, it also been founded differences between APOB 3500GA, APOC3 3206TG, CETP 279AA genotypes and PPARG 12Ala allele prevalence and tissue localization (colon vs rectum). These findings suggest a positive association between most of common lipid metabolism genes polymorphisms studied and SCA prevalence. Dysregulation of APOA1, APOB, APOC3, CETP, NPY, PON1 and PPARG genes could be associated with lower cholesterol plasma levels and increase ROS among colon and rectum mucosa. Furthermore, these results also support the hypothesis that CRC is related with intestinal lipid absorption decrease and secondary bile acids production increase. Moreover, the polymorphisms studied may play an important role as biomarkers to SCA susceptibility.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Reduced-representation sequencing technology iswidely used in genotyping for its economical and efficient features. A popular way to construct the reduced-representation sequencing libraries is to digest the genomic DNA with restriction enzymes. A key factor of this method is to determine the restriction enzyme(s). But there are few computer programs which can evaluate the usability of restriction enzymes in reduced-representation sequencing. SimRAD is an R package which can simulate the digestion of DNA sequence by restriction enzymes and return enzyme loci number as well as fragment number. But for linkage mapping analysis, enzyme loci distribution is also an important factor to evaluate the enzyme. For phylogenetic studies, comparison of the enzyme performance across multiple genomes is important. It is strongly needed to develop a simulation tool to implement these functions. Results: Here, we introduce a Perl module named RestrictionDigest with more functions and improved performance. It can analyze multiple genomes at one run and generate concise comparison of enzyme performance across the genomes. It can simulate single-enzyme digestion, double-enzyme digestion and size selection process and generate comprehensive information of the simulation including enzyme loci number, fragment number, sequences of the fragments, positions of restriction sites on the genome, the coverage of digested fragments on different genome regions and detailed fragment length distribution. Conclusions: RestrictionDigest is an easy-to-use Perl module with flexible parameter settings.With the help of the information produced by the module, researchers can easily determine the most appropriate enzymes to construct the reduced-representation libraries to meet their experimental requirements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Pigeonpea ( Cajanus cajan L. Millsp.) is a drought tolerant legume of the Fabaceae family and the only cultivated species in the genus Cajanus. It is mainly cultivated in the semi-arid tropics of Asia and Oceania, Africa and America. In Malawi, it is grown as a source of food and income and for soil improvement in intercropping systems. However, varietal contamination due to natural outcrossing causes significant quality reduction and yield losses. In this study, 48 polymorphic SSR markers were used to assess the diversity among all pigeonpea varieties cultivated in Malawi to determine if a genetic fingerprint could be identified to distinguish the popular varieties. Results: A total of 212 alleles were observed with an average of 5.58 alleles per marker and a maximum of 14 alleles produced by CCttc019 (Marker 40). Polymorphic information content (PIC), ranged from 0.03 to 0.89 with an average of 0.30. A neighbor-joining tree produced 4 clusters. The most commonly cultivated varieties, which include released varieties and cultivated land races, were well-spread across all the clusters observed, indicating that they generally represented the genetic diversity available in Malawi, although substantial variation was evident that can still be exploited through further breeding. Conclusion: Screening of the allelic data associated with the five most popular cultivated varieties, revealed 6 markers – CCB1, CCB7, Ccac035, CCttc003, Ccac026 and CCttc019 – which displayed unique allelic profiles for each of the five varieties. This genetic fingerprint can potentially be applied for seed certification to confirm the genetic purity of seeds that are delivered to Malawi farmers.