992 resultados para SEQUENCE VARIABILITY


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A highly repetitive satellite sequence was previously identified in the Pacific oyster Crassostrea gigas Thunberg. The sequence has 168 bp per unit, present in tandem repeats, and accounts for 1% to 4% of the genome. We studied the chromosomal location of this satellite sequence by fluorescence in situ hybridization (FISH), A probe was made by polymerase chain reaction and incorporation of digoxigenin-11-dUTP. Hybridization was detected with fluorescein-labeled antidigoxigenin antibodies. FISH signals were located at centromeric regions of 7 pairs of the Pacific oyster chromosomes. No interstitial site was found. Signals were strong and consistent on chromosomes 1, 2, 4, and 7, but weak or variable oil chromosomes 5, 8, and 10. No signal was observed on chromosomes 3, 6, and 9. Our results showed that this sequence is clearly a centromeric satellite, disputing its previous assignment to the telomeric and submetacentric regions of 2 chromosomes. No signal was detected in the American oyster (Crassostrea virginica Gmelin).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Growth hormone (GH), prolactin (PRL) and somatolactin (SL) were purified simultaneously under alkaline condition (pH 9.0) from pituitary glands of sea perch (Lateolabrax japonicas) by a two-step procedure involving gel filtration on Sephadex G-100 and reverse-phase high-performance liquid chromatography (rpHPLC). At each step of purification, fractions were monitored by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and by immunoblotting with chum salmon GH. PRL and SL antisera. The yields of sea perch GH, PRL and SL were 4.2, 1.0 and 0.28 mg/g wet tissue, respectively. The molecular weights of 19,200 and 20,370 Da were estimated by SDS-PAGE for sea perch GH and PRL, respectively. Two forms of sea perch SL were found: one (28,400 Da) is probably glycosylated, while the other one (23,200 Da) is believed to be deglycosylated. GH bioactivity was examined by an in vivo assay. Intraperitoneal injection of sea perch GH at a dose of 0.01 and 0.1 mug/g body weight at 7-day intervals resulted in a significant increase in body weight and length of juvenile rainbow trout. The complete sea-perch GH amino acid sequence of 187 residues was determined by sequencing fragments cleaved by chemicals and enzymes. Alignment of sea-perch GH with those of other fish GHs revealed that sea-perch GH is most similar to advanced marine fish, such as tuna, gilthead sea bream, yellowfin porgy, red sea bream, bonito and yellow tail with 98.4, 96.2%, 95.7%, 95.2%, 94.1% and 91% sequence identity, respectively. Sea-perch GH has low identity to Atlantic cod (76.5%), hardtail (73.3%), flounder (68.4%), chum salmon (66.3%), carp (54%) and blue shark (38%). Partial amino-acid sequences of 127 of sea-perch PRL and the N-terminal of 16 amino-acid sequence of sea-perch SL have been determined. The data show that sea-perch PRL has a slightly higher sequence identity with tilapia PRL( 73.2%) than with chum salmon PRL(70%) in this 127 amino-acid sequence. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Arthrospira (Spirulina) (Setchell& Gardner) is an important cyanobacterium not only in its nutritional potential but in its special biological characteristics. An unbiased fosmid library of Arthrospira maxima FACHB438 that contains 4300 clones was constructed. The size distribution of insert fragments is from 15.5 to 48.9 kb and the average size is 37.6 kb. The recombination frequency is 100%. Therefore the library is 29.9 equivalents to the Arthrospira genome size of 5.4 Mb. A total of 719 sample clones were randomly chosen from the library and 602 available sequences, which consisted of 307,547 bases, covering 5.70% of the whole genome. The codon usage of A. maxima was not strongly biased. GC content at the first position of codons (46.9%) was higher than the second (39.8%) and the third (45.5%) positions. GC content of the genome was 43.6%. Of these sequences, 287 (47.7%) showed high similarities to known genes, 63 (10.5%) to hypothetical genes and the remaining 252 (41.8%) had no significant similarities. The assigned genes were classified into 22 categories with respect to different biological roles. Remarkably, the high presence of 25 sequences (4.2%) encoding reverse transcriptase indicates the RT gene may have multiple copies in the A. maxima genome and might play an important role in the evolutionary history and metabolic regulation. In addition, the sequences encoding the ATP-binding cassette transport system and the two-component signal transduction system were the second and third most frequent genes, respectively. These genomic features provide some clues as to the mechanisms by which this organism adapts to the high concentration of bicarbonate and to the high pH environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sequence-related amplified polymorphism (SRAP) is a novel molecular marker technique designed to amplify open reading frames (ORFs). The SRAP analytic system was set up and applied to Porphyra germplasm identification in this study for the first time. Sixteen Porphyra lines were screened by SRAP technique with 30 primer combinations. In the analysis, 14 primer combinations produced stable and reproducible amplification patterns in three repetitive experiments. Among the total 533 amplified fragments, 522 (98%) were polymorphic, with an average of 38 fragments for each primer combination, ranging in size from 50 to 500 bp. The 533 fragments were visually scored one by one and then used to develop a dendrogram with Unweighted Pair-Group Method Arithmetic Average (UPGMA), and the 16 Porphyra lines were divided into two major groups at the 0.68 similarity level. From the total 533 fragments, I I amplified by two primer combinations, ME1/EM1 and ME4/EM6, were used to develop the DNA fingerprints of the 16 Porphyra lines. The DNA fingerprints were then converted into binary codes, with I and 0 representing presence and absence of the corresponding amplified fragment, respectively. In the DNA fingerprints, each of the 16 Porphyra lines has its unique binary code and can be easily distinguished from the others. This is the first report on the development of SRAP technique and its utilization in germplasm identification of seaweeds. The results demonstrated that SRAP is a simple, stable, polymorphic and reproducible molecular marker technique for the classification and identification of Porphyra lines. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ISSR analysis was used to investigate genetic variations of 184 haploid and diploid samples from nine North Atlantic Chondrus crispus Stackhouse populations and one outgroup Yellow Sea Chondrus ocellatus Holmes population. Twenty-two of 50 primers were selected and 163 loci were scored for genetic diversity analysis. Genetic diversity varied among populations, percentage of polymorphic bands (PPB) ranged from 27.0 to 55.8%, H(Nei's genetic diversity) ranged from 0.11 to 0.20 and I(Shannon's information index) ranged from 0.16 to 0.30. Estimators PPB, H and I had similar values in intra-population genetic diversity, regardless of calculation methods. Analysis of molecular variance (AMOVA) apportioned inter-population and intra-population variations for C crispus, showing more genetic variance (56.5%) occurred in intra-population, and 43.5% variation among nine populations. The Mantel test suggested that genetic differentiation between nine C. crispus populations was closely related with geographic distances (R = 0.78, P = 0.002). Results suggest that, on larger distance scale (ca. > 1000 km), ISSR analysis is useful for determining genetic differentiations of C crispus populations including morphologically inseparable haploid and diploid individuals. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The bay scallop Argopecten irradians is a hermaphroditic bivalve native to the Atlantic coast of the United States that was introduced to China for aquaculture production in 1982. It now supports a major aquaculture industry in China. Introduced species often start with limited genetic variability, which is problematic for the further selective breeding. Bay scallop aquaculture is exclusively hatchery based and as the initial introduction consisted of only 26 scallops, there have been concerns about inbreeding and inbreeding depression in cultured populations in China. In this study, eleven simple sequence repeat (SSR) markers were used to compare genetic variation in cultured populations from China with that in a natural population from the east coast of America. Although the difference in heterozygosity was small, the Chinese populations lost 9 of the 45 alleles (20%) found in the wild population. The reduced allele diversity suggests that the Chinese bay scallop populations experienced a bottleneck in genetic diversity that remains significant despite several recent introductions of new stocks aimed at expanding the gene pool. The loss of allele diversity may affect future efforts in selective breeding and domestication, and results of this study highlight the need for additional introductions, advanced breeding programs that minimize inbreeding and continued genetic monitoring. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cyclic nucleotides (both cAMP and cGMP) play extremely important roles in cyanobacteria, such as regulating heterocyst formation, respiration, or gliding. Catalyzing the formation of cAMP and cGMP from ATP and GTP is a group of functionally important enzymes named adenylate cyclases and guanylate cyclases, respectively. To understand their evolutionary patterns, in this study, we presented a systematic analysis of all the cyclases in cyanobacterial genomes. We found that different cyanobacteria had various numbers of cyclases in view of their remarkable diversities in genome size and physiology. Most of these cyclases exhibited distinct domain architectures, which implies the versatile functions of cyanobacterial cyclases. Mapping the whole set of cyclase domain architectures from diverse prokaryotic organisms to their phylogenetic tree and detailed phylogenetic analysis of cyclase catalytic domains revealed that lineage-specific domain recruitment appeared to be the most prevailing pattern contributing to the great variability of cyanobacterial cyclase domain architectures. However, other scenarios, such as gene duplication, also occurred during the evolution of cyanobacterial cyclases. Sequence divergence seemed to contribute to the origin of putative guanylate cyclases which were found only in cyanobacteria. In conclusion, the comprehensive survey of cyclases in cyanobacteria provides novel insight into their potential evolutionary mechanisms and further functional implications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A molecular approach was developed to distinguish species of red snappers among commercial salted fish products. The specific fragments of the mitocliondrial 12S rRNA gene, which were about 450 bp, were obtained using the semi-nested polymerase chain reaction (semi-nested PCR). Subsequently, PCR amplicons were sequenced, aiming to select restriction endonucleases that generated species-specific restriction fragment length polymorphism (RFLP) profiles. Discrimination of red snappers Lutjanus sanguineus, L. erythopterus from L. argentintaculatus, L. malabarius and other morphologically similar fishes such as Lethrinus leutjanus and Pinjalo pinjalo was feasible by one restriction digestion reaction with three endonucleases Hae III, Sca I and SnaB I, however, for differentiation of L. sattguineus and L. erythopterus, another restriction digestion reaction with single restriction endonuclease Mae II was needed. The seminested PCR-RFLP was demonstrated to be reliable in species identification of salted fish products in this study. (c) 2005 Published by Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Genetic variation of four populations of Sargassum thunbergii (Mert.) O. Kuntze and one outgroup of S. fusiforme (Harv.) Setchell from Shandong peninsula of China was studied with random amplified polymorphic DNA (RAPD) and inter-simple sequence repeat (ISSR) markers. A total of 28 RAPD primers and 19 ISSR primers were amplified, showing 174 loci and 125 loci, respectively. Calculation of genetic diversity with different indicators (P%, percentage of polymorphic loci; H, the expected heterozygosity; I, Shannon's information index) revealed low or moderate levels of genetic variations within each S. thunbergii population. High genetic differentiations were determined with pairwise Nei's unbiased genetic distance (D) and fixation index (F-ST) between the populations. The Mantel test showed that two types of matrices of D and FST were highly correlated, whether from RAPD or ISSR data, r=0.9310 (P = 0.008) and 0.9313 (P=0.009) respectively. Analysis of molecular variance (AMOVA) was used to apportion the variations between and within the S. thunbergii populations. It indicated that the variations among populations were higher than those within populations, being 57.57% versus 42.43% by RAPD and 59.52% versus 40.08% by ISSR, respectively. Furthermore, the Mantel test suggested that the genetic differentiations between the four populations were related to the geographical distances (r > 0.5), i.e., they conformed to the IBD (isolation by distance) model, as expected from UPGMA (unweighted pair group method with arithmetic averages) cluster analysis. As a whole, the high genetic structuring between the four S. thunbergii populations along distant locations was clearly indicated in the RAPD and ISSR analyses (r > 0.8) in our study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thymidylate synthase (TS), an important target for many anticancer drugs, has been cloned from different species. But the cDNA property and function of TS in zebrafish are not well documented. In order to use zebrafish as an animal model for screening novel anticancer agents, we isolated TS cDNA from zebrafish and compared its sequence with those from other species. The open reading frame (ORF) of zebrafish TS cDNA sequence was 954 nucleotides, encoding a 318-amino acid protein with a calculated molecular mass of 36.15 kDa. The deduced amino acid sequence of zebrafish TS was similar to those from other organisms, including rat, mouse and humans. The zebrafish TS protein was expressed in Escherichia coli and purified to homogeneity. The purified zebrafish TS showed maximal activity at 28 degrees C with similar K-m value to human TS. Western immunoblot assay confirmed that TS was expressed in all the developmental stages of zebrafish with a high level of expression at the 1-4 cell stages. To study the function of TS in zebrafish embryo development, a short hairpin RNA (shRNA) expression vector, pSilencer 4.1-CMV/TS, was constructed which targeted the protein-coding region of zebrafish TS mRNA. Significant change in the development of tail and epiboly was found in zebrafish embryos microinjected pSilencer4.1-CMV/TS siRNA expression vector.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Antimicrobial peptides play a major role in innate immunity. The penaeidins, initially characterized from the shrimp Litopenaeus vannamei, are a family of antimicrobial peptides that appear to be expressed in all penaeid shrimps. As of recent, a large number of penaeid nucleotide sequences have been identified from a variety of penaeid shrimp species and these sequences currently reside in several databases under unique identifiers with no nomenclatural continuity. To facilitate research in this field and avoid potential confusion due to a diverse number of nomenclatural designations, we have made a systematic effort to collect, analyse, and classify all the penaeidin sequences available in every database. We have identified a common penaeidin signature and subsequently established a classification based on amino acid sequences. In order to clarify the naming process, we have introduced a 'penaeidin nomenclature' that can be applied to all extant and future penaeidins. A specialized database, PenBase, which is freely available at http://www.penbase.immunaqua.com, has been developed for the penaeidin family of antimicrobial peptides, to provide comprehensive information about their properties, diversity and nomenclature. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The bay scallop, Argopecten irradians irradians, introduced from North America, has become one of the most important aquaculture species in China. Inan effort to identify scallop genes involved in host defense, a high-quality cDNA library was constructed from whole body tissues of the bay scallop. A total of 5828 successful sequencing reactions yielded 4995 expressed sequence tags (ESTs) longer than 100 bp. Cluster and assembly analyses of the ESTs identified 637 contigs (consisting of 2853 sequences) and 2142 singletons, totaling 2779 unique sequences. Basic Local Alignment Search Tool (BLAST) analysis showed that the majority (73%) of the unique sequences had no significant homology (E-value >= 0.005) to sequences in GenBank. Among the 748 sequences with significant GenBank matches, 160 (21.4%) were for genes related to metabolism, 131 (17.5%) for cell/organism defense, 124 (16.6%) for gene/protein expression, 83 (11.1%) for cell structure/motility, 70 (9.4%) for cell signaling/communication, 17 (2.3%) for cell division, and 163 (21.8%) matched to genes of unknown functions. The list of host-defense genes included many genes with known and important roles in innate defense such as lectins, defensins, proteases, protease inhibitors, heat shock proteins, antioxidants, and Toll-like receptors. The study provides a significant number of ESTs for gene discovery and candidate genes for studying host defense in scallops and other molluscs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ulvacean green seaweeds are common worldwide; they formed massive green tides in the Yellow Sea in recent years, which caused marine ecological problems as well as a social issue. We investigated two major genera of the Ulvaceae, Ulva and Enteromorpha, and collected the plastid rbcL and nuclear ITS sequences of specimens of the genera in two sides of the Yellow Sea and analyzed them. Phylogenetic trees of rbcL data show the occurrence of five species of Enteromorpha (E. compressa, E. flexuosa, E. intestinalis, E. linza and E. prolifera) and three species of Ulva (U. pertusa, U. rigida and U. ohnoi). However, we found U. ohnoi, which is known as a subtropical to tropical species, at two sites on Jeju Island, Korea. Four ribotypes in partial sequences of 5.8S rDNA and ITS2 from E. compressa were also found. Ribotype network analysis revealed that the common ribotype, occurring in China, Korea and Europe, is connected with ribotypes from Europe and China/Japan. Although samples of the same species were collected from both sides of the Yellow Sea, intraspecific genetic polymorphism of each species was low among samples collected worldwide.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A molecular approach was developed to distinguish species of red snappers among commercial salted fish products. The specific fragments of the mitochondrial 12S rRNA gene, which were about 450bp, were obtained using the semi-nested polymerase chain reaction (semi-nested PCR). Subsequently, PCR arnplicons were sequenced, aiming to select restriction endonucleases that generated species-specific restriction fragment length polymorphism (RFLP) profiles. Discrimination of red snappers Lutjanus sanguineus, Lutjanus erythopterus from Lutjanus argentimaculatus, Lutjanus malabarius and other morphologically similar fishes such as Lethrinus leutjanus and Pinjalo pinjalo was feasible by one restriction digestion reaction with three endonucleases Hae III, Sca I and SnaB I, however, for discrimination of L. sanguineus and L. erythopterus, another restriction digestion reaction with single restriction endonuclease Mae II was needed. The semi-nested PCR-RFLP was demonstrated to be reliable in species identification of salted fish products in this study. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A large number of polymorphic simple sequence repeats (SSRs) or microsatellites are needed to develop a genetic map for shrimp. However, developing an SSR map is very time-consuming, expensive, and most SSRs are not specifically linked to gene loci of immediate interest. We report here on our strategy to develop polymorphic markers using expressed sequence tags (ESTs) by designing primers flanking single or multiple SSRs with three or more repeats. A subtracted cDNA library was prepared using RNA from specific pathogen-free (SPF) Litopenaeus vannamei juveniles (similar to 1 g) collected before (0) and after (48 h) inoculation with the China isolate of white spot syndrome virus (WSSV). A total of 224 clones were sequenced, 194 of which were useful for homology comparisons against annotated genes in NCBI nonredundant (nr) and protein databases, providing 179 sequences encoded by nuclear DNA, 4 mitochondrial DNA, and 11 were similar to portions of WSSV genome. The nuclear sequences clustered in 43 groups, 11 of which were homologous to various ESTs of unknown function, 4 had no homology to any sequence, and 28 showed similarities to known genes of invertebrates and vertebrates, representatives of cellular metabolic processes such as calcium ion balance, cytoskeleton mRNAs, and protein synthesis. A few sequences were homologous to immune system-related (allergens) genes and two were similar to motifs of the sex-lethal gene of Drosophila. A large number of EST sequences were similar to domains of the EF-hand superfamily (Ca2+ binding motif and FRQ protein domain of myosin light chains). Single or multiple SSRs with three or more repeats were found in approximately 61 % of the 179 nuclear sequences. Primer sets were designed from 28 sequences representing 19 known or putative genes and tested for polymorphism (EST-SSR marker) in a small test panel containing 16 individuals. Ten (53%) of the 19 putative or unknown function genes were polymorphic, 4 monomorphic, and 3 either failed to satisfactorily amplify genomic DNA or the allele amplification conditions need to be further optimized. Five polymorphic ESTs were genotyped with the entire reference mapping family, two of them (actin, accession #CX535973 and shrimp allergen arginine kinase, accession #CX535999) did not amplify with all offspring of the IRMF panel suggesting presence of null alleles, and three of them amplified in most of the IRM F offspring and were used for linkage analysis. EF-hand motif of myosin light chain (accession #CX535935) was placed in ShrimpMap's linkage group 7, whereas ribosomal protein S5 (accession #CX535957) and troponin I (accession #CX535976) remained unassigned. Results indicate that (a) a large number of ESTs isolated from this cDNA library are similar to cytoskeleton mRNAs and may reflect a normal pathway of the cellular response after im infection with WSSV, and (b) primers flanking single or multiple SSRs with three or more repeats from shrimp ESTs could be an efficient approach to develop polymorphic markers useful for linkage mapping. Work is underway to map additional SSR-containing ESTs from this and other cDNA libraries as a plausible strategy to increase marker density in ShrimpMap.