966 resultados para POLÍMEROS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

One option to optimize carbon materials for supercapacitor applications is the generation of surface functional groups that contribute to the pseudocapacitance without losing the designed physical properties. This requires suitable functionalization techniques able to selectively introduce a given amount of electroactive oxygen groups. In this work, the influence of the chemical and electrochemical oxidation methods, on the chemical and physical properties of a zeolite templated carbon (ZTC), as a model carbon material, have been studied and compared. Although both oxidation methods generally produce a loss of the original ZTC physical properties with increasing amount of oxidation, the electrochemical method shows much better controllability and, unlike chemical treatments, enables the generation of a large number of oxygen groups (O = 11000- 3300 μmol/g), with a higher proportion of active functionalities, while retaining a high surface area (ranging between 1900-3500 m2/g), a high microporosity and an ordered 3-D structure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Active packaging is becoming an emerging food technology to improve quality and safety of food products. One of the most common approaches is based on the release of antioxidant/antimicrobial compounds from the packaging material. In this work an antifungal active packaging system based on the release of carvacrol and thymol was optimized to increase the post-harvest shelf life of fresh strawberries and bread during storage. Thermal properties of the developed packaging material were determined by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Volatile compounds in food samples contained in active packaging systems were monitored by using headspace solid phase microextraction followed by gas chromatography analysis (HS-SPME-GC-MS) at controlled conditions. The obtained results provided evidences that exposure to carvacrol and thymol is an effective way to enlarge the quality of strawberries and bread samples during distribution and sale.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Active packaging is becoming an emerging food technology to improve quality and safety of food products. One of the most common approaches is based on the release of antioxidant/antimicrobial compounds from the packaging material. In this work an antifungal active packaging system based on the release of carvacrol and thymol was optimized to increase the post-harvest shelf life of fresh strawberries and bread during storage. Thermal properties of the developed packaging material were determined by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Volatile compounds in food samples contained in active packaging systems were monitored by using headspace solid phase microextraction followed by gas chromatography analysis (HS-SPMEGC-MS) at controlled conditions. The obtained results provided evidences that exposure to carvacrol and thymol is an effective way to enlarge the quality of strawberries and bread samples during distribution and sale.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanoclay-based pigments are promising colorants. They enhance the colorimetric properties of the dye giving more intense and saturated colours. In addition, they act as reinforce additive when they are dispersed into polymers. They can be applied in a wide variety of substrates: printing inks, textiles, acrylic paints and concrete; and more applications are being developed. One important advantage of the nanoclay-based pigments is the fact that they can be considered an ecological alternative to contaminant colorants, in contrast to some traditional inorganic pigments that contend heavy metal in their structure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work studies the use of various single-walled carbon nanotube (SWCNT) buckypapers as catalyst supports for methanol electro-oxidation in acid media. Buckypapers were obtained by vacuum filtration from pristine and oxidized SWCNT suspensions in different liquid media. Pt–Ru catalysts supported on the buckypapers were prepared by multiple potentiostatic pulses using a diluted solution of Pt and Ru salts (2 mM H2PtCl6 + 2 mM RuCl3) in acid media. The resulting materials were characterized via SEM, TEM, EDX and ICP-OES analysis. Well dispersed rounded nanoparticles between 2 and 15 nm were successfully electrodeposited on the SWCNT buckypapers. The ruthenium content in the bimetallic deposits was between 32 and 48 at. %, while the specific surface areas of the catalysts were in the range of 72–113 m2 g−1. It was found that the solvent used to prepare the SWCNT buckypaper films has a strong influence on the catalyst dispersion, particle size and metal loading. Cyclic voltammetry and chronoamperometry experiments point out that the most active electrodes for methanol electro-oxidation were prepared with the buckypaper supports that were obtained from SWCNT dispersions in N-methyl-pyrrolidone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Surface oxygen groups play a key role on the performance of porous carbon electrodes for electrochemical capacitors in aqueous media. The electrooxidation method in NaCl electrolyte using a filter press cell and dimensionally stable anodes is proposed as a viable process for the generation of oxygen groups on porous carbon materials. The experimental set-up is so flexible that allows the easy modification of carbon materials with different configurations, i.e. cloths and granular, obtaining different degrees of oxidation for both conformations without the requirement of binders and conductivity promoters. After the electrooxidation method, the attained porosity is maintained between 90 and 75% of the initial values. The surface oxygen groups generated can increase the capacitance up to a 30% when compared to the pristine material. However, a severe oxidation is detrimental since it may decrease the conductivity and increase the resistance for ion mobility.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We show, through some examples, that chemical activation by alkaline hydroxides permits the preparation of activated carbons with tailored pore volume, pore size distribution, pore structure and surface chemistry, which are useful for their application as electrodes in supercapacitors. Examples are presented discussing the importance of each of these properties on the double layer capacitance, on the kinetics of the electric double-layer charge-discharge process and on the pseudo-capacitative contribution from the surface functional groups or the addition of a conducting polymer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El alarmante descenso del número de alumnos que estudian química en bachillerato hace necesaria la búsqueda de herramientas para recuperar los niveles de finales de la pasada década. Los autores proponen algunas estrategias, aplicables en todos los niveles de enseñanza no universitaria, que van desde experiencias de laboratorio para alumnos de primaria, hasta la creación de una serie de personajes de ficción, que intervienen en los enunciados de los problemas de química, poner a disposición de los alumnos colecciones de problemas resueltos y la participación en pruebas como las olimpiadas de química.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biopolymers, such as poly(lactic acid) (PLA), have been proposed as environmentally-friendly alternatives in applications such as food packaging. In this work, silver nanoparticles and thymol were used as active additives in PLA matrices, combining the antibacterial activity of silver with the antioxidant performance of thymol. The combined action of both additives influenced PLA thermal degradation in ternary systems. DSC results showed that the addition of thymol resulted in a clear decrease of the glass transition temperature (Tg) of PLA, suggesting its plasticizing effect in PLA matrices. Slight modifications in mechanical properties of dog-bone bars were also observed after the addition of the active components, especially in the elastic modulus. FESEM analyses showed the good distribution of active additives through the PLA matrix, obtaining homogenous surfaces and highlighting the presence of silver nanoparticles successfully embedded into the bulk matrix. Degradation of these PLA-based nanocomposites with thymol and silver nanoparticles in composting conditions indicated that the inherent biodegradable character of this biopolymer was improved after this modification. The obtained nanocomposites showed suitable properties to be used as biodegradable active-food packaging systems with antioxidant and antimicrobial effects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Antioxidant nano-biocomposites based on poly(ε-caprolactone) (PCL) were prepared by incorporating hydroxytyrosol (HT) and a commercial montmorillonite, Cloisite®30B (C30B), at different concentrations. A full structural, thermal, mechanical and functional characterization of the developed nano-biocomposites was carried out. The presence of the nanoclay and HT increased PCL crystallinity, whereas some decrease in thermal stability was observed. TEM analyses corroborated the good dispersion of C30B into the PCL macromolecular structure as already asserted by XRD tests, since no large aggregates were observed. A reduction in oxygen permeability and increase in elastic modulus were obtained for films containing the nanoclay. Finally, the presence of the nanoclay produced a decrease in the HT release from films due to some interaction between HT and C30B. Results proved that these nano-biocomposites can be an interesting and environmentally-friendly alternative for active food packaging applications with antioxidant performance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main directions in food packaging research are targeted toward improvements in food quality and food safety. For this purpose, food packaging providing longer product shelf-life, as well as the monitoring of safety and quality based upon international standards, is desirable. New active packaging strategies represent a key area of development in new multifunctional materials where the use of natural additives and/or agricultural wastes is getting increasing interest. The development of new materials, and particularly innovative biopolymer formulations, can help to address these requirements and also with other packaging functions such as: food protection and preservation, marketing and smart communication to consumers. The use of biocomposites for active food packaging is one of the most studied approaches in the last years on materials in contact with food. Applications of these innovative biocomposites could help to provide new food packaging materials with improved mechanical, barrier, antioxidant, and antimicrobial properties. From the food industry standpoint, concerns such as the safety and risk associated with these new additives, migration properties and possible human ingestion and regulations need to be considered. The latest innovations in the use of these innovative formulations to obtain biocomposites are reported in this review. Legislative issues related to the use of natural additives and agricultural wastes in food packaging systems are also discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Novel nano-biocomposite films based on poly (lactic acid) (PLA) were prepared by incorporating thymol, as the active additive, and modified montmorillonite (D43B) at two different concentrations. A complete thermal, structural, mechanical and functional characterization of all nano-biocomposites was carried out. Thermal stability was not significantly affected by the addition of thymol, but the incorporation of D43B improved mechanical properties and reduced the oxygen transmission rate by the formation of intercalated structures, as suggested by wide angle X-ray scattering patterns and transmission electron microscopy images. The addition of thymol decreased the PLA glass transition temperature, as the result of the polymer plasticization, and led to modification of the elastic modulus and elongation at break. Finally, the amount of thymol remaining in these formulations was determined by liquid chromatography (HPLC-UV) and the antioxidant activity by the DPPH spectroscopic method, suggesting that the formulated nano-biocomposites could be considered a promising antioxidant active packaging material.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, the catalytic effect of MCM-41 on the qualitative composition of the gases evolved in the pyrolysis of glycerol, tobacco and tobacco–glycerol mixtures has been studied by TGA/FTIR. The results obtained reflect that the amount of volatile products obtained from tobacco or from tobacco containing mixtures is noticeably decreased if the catalyst is used as a tobacco additive. The addition of the catalyst also produces noticeable changes in the composition of the gases obtained at each temperature. Such changes are more significant in the case of the pyrolysis of the tobacco–glycerol–mixture than in the pyrolysis of tobacco. The evolution patterns for different types of compounds reveal that the catalyst contributes to a noticeable decrease of the yields of methane, CO, CO2 and carbonylic compounds, which could be interesting from the point of view of the use of MCM-41 as a tobacco additive in order to reduce tobacco smoke toxicity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Boron-doped diamond electrodes have emerged as anodic material due to their high physical, chemical and electrochemical stability. These characteristics make it particularly interesting for electrochemical wastewater treatments and especially due to its high overpotential for the Oxygen Evolution Reaction. Diamond electrodes present the maximum efficiency in pollutant removal in water, just limited by diffusion-controlled electrochemical kinetics. Results are presented for the elimination of benzoic acid and for the electrochemical treatment of synthetic tannery wastewater. The results indicate that diamond electrodes exhibit the best performance for the removal of total phenols, COD, TOC, and colour.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of dielectric barrier discharge plasma treatment on zein film containing thymol as an active ingredient were evaluated. The plasma discharge was optically characterized to identify the reactive species. A significant increase in the film roughness (p < 0.05) was observed due to the etching effect of DBD plasma, which was correlated with the increase in the diffusion rate of thymol in the food simulant. The diffusion of thymol from the zein film was measured in aqueous solution. The kinetics of thymol release followed the Fick’s law of diffusion as shown by the high correlation coefficients between experimental and theoretical data. No significant change (p > 0.05) was observed for the thermal properties of the antimicrobial films after DBD plasma treatment.