958 resultados para Hepatic encephalopathy


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Contrary to previous research, training may improve exercise performance in a lizard, the brown anole. A brief, two-week training period resulted in increased performance speed and distance before exhaustion in trained lizards. Trained lizards were also able to more effectively use leg glycogen stores, however each of these improvements were not found in lizards treated with alcohol. Liver glycogen concentrations were also lower in alcohol-treated lizards, and patterns of liver glycogen concentrations during recovery indicate some hepatic lactate gluconeogenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

By searching the literatures, it was found that a total of 32 drugs interacting with herbal medicines in humans. These drugs mainly include anticoagulants (warfarin, aspirin and phenprocoumon), sedatives and antidepressants (midazolam, alprazolam and amitriptyline), oral contraceptives, anti-HIV agents (indinavir, ritonavir and saquinavir), cardiovascular drug (digoxin), immunosuppressants (cyclosporine and tacrolimus) and anticancer drugs (imatinib and irinotecan). Most of them are substrates for cytochrome P450s (CYPs) and/or P-glycoprotein (PgP) and many of which have narrow therapeutic indices. However, several drugs including acetaminophen, carbamazepine, mycophenolic acid, and pravastatin did not interact with herbs. Both pharmacokinetic (e.g. induction of hepatic CYPs and intestinal PgP) and/or pharmacodynamic mechanisms (e.g. synergistic or antagonistic interaction on the same drug target) may be involved in drug-herb interactions, leading of altered drug clearance, response and toxicity. Toxicity arising from drug-herb interactions may be minor, moderate, or even fatal, depending on a number of factors associated with the patients, herbs and drugs. Predicting drug-herb interactions, timely identification of drugs that interact with herbs, and therapeutic drug monitoring may minimize toxic drug-herb interactions. It is likely to predict pharmacokinetic herb-drug interactions by following the pharmacokinetic principles and using proper models that are used for predicting drug-drug interactions. Identification of drugs that interact with herbs can be incorporated into the early stages of drug development. A fourth approach for circumventing toxicity arising from drug-herb interactions is proper design of drugs with minimal potential for herbal interaction. So-called ”hard drugs” that are not metabolized by CYPs and not transported by PgP are believed not to interact with herbs due to their unique pharmacokinetic properties. More studies are needed and new approached are required to minimize toxicity arising from drug-herb interactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The oxazaphosphorines including cyclophosphamide (CPA), ifosfamide (IFO), and trofosfamide represent an important group of therapeutic agents due to their substantial antitumor and immuno-modulating activity. CPA is widely used as an anticancer drug, an immunosuppressant, and for the mobilization of hematopoetic progenitor cells from the bone marrow into peripheral blood prior to bone marrow transplantation for aplastic anemia, leukemia, and other malignancies. New oxazaphosphorines derivatives have been developed in an attempt to improve selectivity and response with reduced toxicity. These derivatives include mafosfamide (NSC 345842), glufosfamide (D19575, β-D-glucosylisophosphoramide mustard), NSC 612567 (aldophosphamide perhydrothiazine), and NSC 613060 (aldophosphamide thiazolidine). This review highlights the metabolism and transport of these oxazaphosphorines (mainly CPA and IFO, as these two oxazaphosphorine drugs are the most widely used alkylating agents) and the clinical implications. Both CPA and IFO are prodrugs that require activation by hepatic cytochrome P450 (CYP)-catalyzed 4-hydroxylation, yielding cytotoxic nitrogen mustards capable of reacting with DNA molecules to form crosslinks and lead to cell apoptosis and/or necrosis. Such prodrug activation can be enhanced within tumor cells by the CYP-based gene directed-enzyme prodrug therapy (GDEPT) approach. However, those newly synthesized oxazaphosphorine derivatives such as glufosfamide, NSC 612567 and NSC 613060, do not need hepatic activation. They are activated through other enzymatic and/or non-enzymatic pathways. For example, both NSC 612567 and NSC 613060 can be activated by plain phosphodiesterase (PDEs) in plasma and other tissues or by the high-affinity nuclear 3'-5' exonucleases associated with DNA polymerases, such as DNA polymerases and ε. The alternative CYP-catalyzed inactivation pathway by N-dechloroethylation generates the neurotoxic and nephrotoxic byproduct chloroacetaldehyde (CAA). Various aldehyde dehydrogenases (ALDHs) and glutathione S-transferases (GSTs) are involved in the detoxification of oxazaphosphorine metabolites. The metabolism of oxazaphosphorines is auto-inducible, with the activation of the orphan nuclear receptor pregnane X receptor (PXR) being the major mechanism. Oxazaphosphorine metabolism is affected by a number of factors associated with the drugs (e.g., dosage, route of administration, chirality, and drug combination) and patients (e.g., age, gender, renal and hepatic function). Several drug transporters, such as breast cancer resistance protein (BCRP), multidrug resistance associated proteins (MRP1, MRP2, and MRP4) are involved in the active uptake and efflux of parental oxazaphosphorines, their cytotoxic mustards and conjugates in hepatocytes and tumor cells. Oxazaphosphorine metabolism and transport have a major impact on pharmacokinetic variability, pharmacokinetic-pharmacodynamic relationship, toxicity, resistance, and drug interactions since the drug-metabolizing enzymes and drug transporters involved are key determinants of the pharmacokinetics and pharmacodynamics of oxazaphosphorines. A better understanding of the factors that affect the metabolism and transport of oxazaphosphorines is important for their optional use in cancer chemotherapy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The clinical use of irinotecan (CPT-11) is hindered by dose-limiting diarrhea and myelosuppression. Recent clinical studies indicate that thalidomide, a known tumor necrosis factor-alpha inhibitor, ameliorated the toxicities induced by CPT-11. However, the mechanisms for this are unknown. This study aimed to investigate whether combination of thalidomide modulated the toxicities of CPT-11 using a rat model and the possible role of the altered pharmacokinetic component in the toxicity modulation using in vitro models. The toxicity model was constructed by treatment of healthy rats with CPT-11 at 60 mg/kg per day by intravenous (i.v.) injection. Body weight, acute and delayed-onset diarrhea, blood cell counts, and macroscopic and microscopic intestinal damages were monitored in rats treated with CPT-11 alone or combined therapy with thalidomide at 100 mg/kg administered by intraperitoneal (i.p.) injection. Single dose and 5-day multiple-dose studies were conducted in rats to examine the effects of concomitant thalidomide on the plasma pharmacokinetics of CPT-11 and its major metabolites SN-38 and SN-38 glucuronide (SN-38G). The effect of CPT-11 on thalidomide's pharmacokinetics was also checked. Rat liver microsomes and a rat hepatoma cell line, H4-II-E cells, were used to study the in vitro metabolic interactions between these two drugs. H4-II-E cells were also used to investigate the effect of thalidomide and its hydrolytic products on the transport of CPT-11 and SN-38. In addition, the effect of thalidomide and its hydrolytic products on rat plasma protein binding of CPT-11 and SN-38 was examined. Administration of CPT-11 by i.v. for 4 consecutive days to rats induced significant body weight loss, decrease in neutrophil and lymphocyte counts, severe acute- and delayed-onset diarrhea, and intestinal damages. These toxicities were alleviated when CPT-11 was combined with thalidomide. In both single-dose and 5-day multiple-dose pharmacokinetic study, coadministered thalidomide significantly increased the area under the plasma concentration-time curve (AUC) of CPT-11, but the AUC and elimination half-life (t(1/2)) of SN-38 were significantly decreased. However, CPT-11 did not significantly alter the pharmacokinetics of thalidomide. Thalidomide at 25 and 250 microM and its hydrolytic products at a total concentration of 10 microM had no significant effect on the plasma protein binding of CPT-11 and SN-38, except for that thalidomide at 250 microM caused a significant increase in the unbound fraction (f(u)) of CPT-11 by 6.7% (P < 0.05). The hydrolytic products of thalidomide (total concentration of 10 microM), but not thalidomide, significantly decreased CPT-11 hydrolysis by 16% in rat liver microsomes (P < 0.01). The formation of both SN-38 and SN-38G from CPT-11, SN-38 glucuronidation, or intracellular accumulation of both CPT-11 and SN-38 in H4-II-E cells followed Michaelis-Menten kinetics with the one-binding site model being the best fit for the kinetic data. Coincubation or 2-hr preincubation of thalidomide at 25 microM and 250 microM and its hydrolytic products at 10 microM did not show any significant effects on CPT-11 hydrolysis and SN-38 glucuronidation. However, preincubation of H4-II-E cells with thalidomide (250 microM), its hydrolytic products (total concentration of 10 microM), or phthaloyl glutamic acid (one major thalidomide hydrolytic product, 10 microM) significantly increased the intracellular accumulation of SN-38, but not CPT-11 (P < 0.01). The dose-limiting toxicities of CPT-11 were alleviated by combination with thalidomide in rats and the pharmacokinetic modulation by thalidomide may partially explain its antagonizing effects on the toxicities of CPT-11. The hydrolytic products of thalidomide, instead of the parental drug, modulated the hepatic hydrolysis of CPT-11 and intracellular accumulation of SN-38, probably contributing to the altered plasma pharmacokinetics of CPT-11 and SN-38. Further studies are needed to explore the role of both pharmacokinetics and pharmacodynamic components in the protective effect of thalidomide against the toxicities of CPT-11.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The oxazaphosphorines cyclophosphamide, ifosfamide and trofosfamide remain a clinically useful class of anticancer drugs with substantial antitumour activity against a variety of solid tumors and hematological malignancies. A major limitation to their use is tumour resistance, which is due to multiple mechanisms that include increased DNA repair, increased cellular thiol levels, glutathione S-transferase and aldehyde dehydrogenase activities, and altered cell-death response to DNA damage. These mechanisms have been recently re-examined with the aid of sensitive analytical techniques, high-throughput proteomic and genomic approaches, and powerful pharmacogenetic tools. Oxazaphosphorine resistance, together with dose-limiting toxicity (mainly neutropenia and neurotoxicity), significantly hinders chemotherapy in patients, and hence, there is compelling need to find ways to overcome it. Four major approaches are currently being explored in preclinical models, some also in patients: combination with agents that modulate cellular response and disposition of oxazaphosphorines; antisense oligonucleotides directed against specific target genes; introduction of an activating gene (CYP3A4) into tumor tissue; and modification of dosing regimens. Of these approaches, antisense oligonucleotides and gene therapy are perhaps more speculative, requiring detailed safety and efficacy studies in preclinical models and in patients. A fifth approach is the design of novel oxazaphosphorines that have favourable pharmacokinetic and pharmacodynamic properties and are less vulnerable to resistance. Oxazaphosphorines not requiring hepatic CYP-mediated activation (for example, NSC 613060 and mafosfamide) or having additional targets (for example, glufosfamide that also targets glucose transport) have been synthesized and are being evaluated for safety and efficacy. Characterization of the molecular targets associated with oxazaphosphorine resistance may lead to a deeper understanding of the factors critical to the optimal use of these agents in chemotherapy and may allow the development of strategies to overcome resistance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Postoperative cholangitis is a frequent and unpredictable complication of unknown etiology following bile duct reconstruction (BDR), particularly for biliary atresia. This study was undertaken to correlate the growth of bacteria in the hepaticojejunostomy with that in the liver after BDR. Quantitative bacterial culture was done on the specimens taken from the liver and from the hepaticojejunostomy at 1 week (group 1, n = 7), 1 month (group 2, n = 7), and 2 months (group 3, n = 7) following BDR with Roux-en-Y hepaticojejunostomy in piglets after 2 weeks of common bile duct ligation. The histological examination of the liver and the hepaticojejunostomy, as well as serial monitoring of hemogram and liver function tests, were performed to correlate the findings with the bacterial concentration of the liver and the hepaticojejunostomy following BDR. The bacterial concentration of the hepaticojejunostomy, expressed as log10 colony-forming units per gram (log10 CFU/g) of the hepaticojejunostomy, showed a progressive decrease from 8.38 ± 1.36 in group 1, 7.07 ± 2.54 in group 2, to 3.56 ± 1.31 in group 3 (p = 0.001). The log10 CFU/g of the liver also showed a progressive decrease from 5.02 ± 1.59 in group 1, 3.16 ± 1.56 in group 2, to 2.19 ± 1.09 in group 3 (p = 0.006). There was a significant positive correlation of the log10 CFU/g of the liver (n = 21) with that of the hepaticojejunostomy (n = 21) following BDR (r = 0.600, p = 0.004). Most of the infectious pathogens isolated from the liver were also isolated from the hepaticojejunostomy. The changes in hemoglobin, bilirubin, albumin, and ammonia significantly correlated with the changes of the bacterial concentration of the liver. The results of the study suggests that hepatic bacterial proliferation after BDR is significantly affected by microbial overgrowth in the bilioenteric anastomosis and is associated with deteriorated liver function and hemogram.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Annual Ryegrass Toxicity (ARGT) is a potentially lethal disease affecting livestock grazing on pastures or consuming fodder that include annual ryegrass (Lolium rigidum) contaminated with corynetoxins. The corynetoxins (CTs), among the most lethal toxins produced in nature, are produced by the bacterium Rathayibacter toxicus that uses a nematode vector to attach to and infect the seedheads of L.rigidum. There is little known of the factors that control toxin production. Several studies have speculated that a bacteriophage specific to R.toxicus may be implicated in CT production. We have developed a PCR-based assay to test for both bacterium and phage in ryegrass material and results indicate that there is a correlation between phage and bacterial presence in all toxic ryegrass samples tested so far. This PCR-based technique may ultimately allow for a rapid, high-throughput screening assay to identify potentially toxic pastures and feed in the field. Currently, ~80% of the 45 Kb genome has been sequenced an investigation to further elucidate its potential role in toxin production.Furthermore, specific alterations in gene expression as a result of exposure to CTs or the closely related tunicamycins (TMs), which are commercially available and considered biologically indistinguishable from CTs, will be evaluated for use as biomarkers of exposure. The effects of both toxins will be analysed in vitro using a rat hepatocyte cell line and screened on a low-density DNA micro array “CT-Chip” that contains <100 selected rat hepatic genes. The results are expected to further define the bioequivalence of CTs and TMs and to identify levels of exposure that are related to specific toxic effects or have no adverse effect on livestock.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The presence of nitric oxide synthase (NOS) and role of nitric oxide (NO) in vascular regulation was investigated in the Australian lungfish, Neoceratodus forsteri. No evidence was found for NOS in the endothelium of large and small blood vessels following processing for NADPH-diaphorase histochemistry. However, both NADPH-diaphorase histochemistry and neural NOS immunohistochemistry demonstrated a sparse network of nitrergic nerves in the dorsal aorta, hepatic artery, and branchial arteries, but there were no nitrergic nerves in small blood vessels in tissues. In contrast, nitrergic nerves were found in non-vascular tissues of the lung, gut and kidney. Dual-wire myography was used to determine if NO signalling occurred in the branchial artery of N. forsteri. Both SNP and SIN-1 had no effect on the pre-constricted branchial artery, but the particulate guanylyl cyclase (GC) activator, C-type natriuretic peptide, always caused vasodilation. Nicotine mediated a dilation that was not inhibited by the soluble GC inhibitor, ODQ, or the NOS inhibitor, L-NNA, but was blocked by the cyclooxygenase inhibitor, indomethacin. These data suggest that NO control of the branchial artery is lacking, but that prostaglandins could be endothelial relaxing factors in the vasculature of lungfish.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ionic copper entering blood plasma binds tightly to albumin and the macroglobulin transcuprein. It then goes primarily to the liver and kidney except in lactation, where a large portion goes directly to the mammary gland. Little is known about how this copper is taken up from these plasma proteins. To examine this, the kinetics of uptake from purified human  albumin and α2-macroglobulin, and the effects of inhibitors, were measured using human hepatic (HepG2) and mammary epithelial (PMC42) cell lines. At physiological concentrations (3–6 µM), both cell types took up copper from these proteins independently and at rates similar to each other and to those for Cu-dihistidine or Cu-nitrilotriacetate (NTA). Uptakes from   α2-macroglobulin indicated a single saturable system in each cell type, but with different kinetics, and 65–80% inhibition by Ag(I) in HepG2 cells but not PMC42 cells. Uptake kinetics for Cu-albumin were more complex and also differed with cell type (as was the case for Cu-histidine and NTA), and there was little or no inhibition by Ag(I). High Fe(II) concentrations (100–500 µM) inhibited copper uptake from albumin by 20–30% in both cell types and that from {alpha}2-macroglobulin by 0–30%, and there was no inhibition of the latter by Mn(II) or Zn(II). We conclude that the proteins mainly responsible for the plasma-exchangeable copper pool deliver the metal to mammalian cells efficiently and by several different mechanisms.α2-Macroglobulin delivers it primarily to copper transporter 1 in hepatic cells but not mammary epithelial cells, and additional as-yet-unidentified copper transporters or systems for uptake from these proteins remain to be identified.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lumiracoxib (Prexige©) 200 mg was listed in Australia’s Pharmaceutical Benefits Scheme (PBS) schedules on 01 August 2006. The listing was intended as a cost-minimisation strategy, as lumiracoxib 200 mg was deemed equivalent in therapeutic effect to celecoxib (Celebrex©) 200 mg, and was available at a lower cost. By the time of listing on the PBS, a safety re-evaluation of the recommended daily dose of lumiracoxib was being considered in other national regulatory jurisdictions. Within 3 months of listing, the manufacturer revised the recommended dosage to half that of the PBS-listed dosage. However, the PBS listing was neither revoked nor modified. At the time of listing on the PBS, lumiracoxib was known to be 17 times as biochemically selective in inhibiting the COX-2 isoform as celecoxib, and twice as selective as rofecoxib, already withdrawn for safety reasons. Safety concerns had already been raised about adverse hepatic outcomes on daily doses of lumiracoxib 200 mg. Communication of information about the risk potential of lumiracoxib was inadequate. Economic and political considerations were prioritised over patient safety, and lumiracoxib 200 mg remained available via the PBS until 10 August 2007, when it was withdrawn for safety reasons following cases of hepatic morbidity and mortality.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Type 2 diabetes (T2D) is one of the fastest growing threats to human health in westernised and developing countries and is associated with central obesity, atherosclerosis, dyslipidaemia, hyperinsulinaemia and  hypertension. Insulin resistance, defined as a diminished response to ordinary levels of circulating insulin in one or more peripheral tissues, is an integral feature of T2D pathophysiology. This includes an impairment of insulin to inhibit hepatic glucose output and to stimulate glucose disposal into muscle and fat. While insulin is responsible for a number of specific biological responses, stimulation of glucose transport is critical for the maintenance of glucose homeostasis. The primary mechanism for insulin stimulation of glucose uptake into muscle and fat is the translocation of glucose transporter 4 (GLUT4) to the cell surface from intracellular storage vesicles within the cell. A major advantage in focussing on insulin regulation of glucose transport is that this represents the endpoint of multiple upstream signalling pathways. This chapter describes the measurement of GLUT4 translocation in cultured cells and its potential application for both  mechanistic and therapeutic studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Researches on auricular acupuncture (AA) have examined mainly its treatment effects. This study aimed to investigate the accuracy and precision of using auricular examination (AE) as a complementary diagnostic tool for screening hepatic disorders. Twenty patients suffering from liver dysfunction and 25 controls aged 18–60 years were recruited from an acute hospital. Participants were examined using three AE methods including visual inspection, electrical skin resistance measurement, and tenderness testing on the liver AA zone of both ears. Significant differences were found in visual inspection and electrical skin resistance on the AA zones between the two groups. Patients suffering from liver dysfunction tended to have at least one abnormality in skin color, appearance, presence of papules, abundance of capillary and desquamation on the ear (Relative Risk—Right ear: RR = 2.9, 95% confidence interval (CI) 1.4, 6.2; Left: RR = 1.8, 95% CI, 1.01, 3.1). The sensitivity for visual inspection was 0.7 for both ears; specificity was 0.76 for the (R) and 0.6 for the (L) ear. The mean difference in electrical skin resistance was 4.3 MΩ (95% CI, 1.7, 6.9) for the (L) ear; 4.5 MΩ (95% CI, 1.5, 7.6) for the (R) ear. Our results suggest that malfunction of the liver appeared to be reflected by the presence of morphological changes on the liver AA zone. Visual inspection and electrical skin resistance on the liver AA zone are potentially sensitive to screen hepatic disorders.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mechanisms of how tea and epigallocatechin-3-gallate (EGCG) lower body fat are not completely understood. This study investigated long-term administration of green tea (GT), black tea (BT), or isolated EGCG (1 mg/kg per day) on body composition, glucose tolerance, and gene expression related to energy metabolism and lipid homeostasis; it was hypothesized that all treatments would improve the indicators of metabolic syndrome. Rats were fed a 15% fat diet for 6 months from 4 weeks of age and were supplied GT, BT, EGCG, or water. GT and BT reduced body fat, whereas GT and EGCG increased lean mass. At 16 weeks GT, BT, and EGCG improved glucose tolerance. In the liver, GT and BT increased the expression of genes involved in fatty acid synthesis (SREBP-1c, FAS, MCD, ACC) and oxidation (PPAR-α, CPT-1, ACO); however, EGCG had no effect. In perirenal fat, genes that mediate adipocyte differentiation were suppressed by GT (Pref-1, C/EBP-β, and PPAR-γ) and BT (C/EBP-β), while decreasing LPL, HSL, and UCP-2 expression; EGCG increased expression of UCP-2 and PPAR-γ genes. Liver triacylglycerol content was unchanged. The results suggest that GT and BT suppressed adipocyte differentiation and fatty acid uptake into adipose tissue, while increasing fat synthesis and oxidation by the liver, without inducing hepatic fat accumulation. In contrast, EGCG increased markers of thermogenesis and differentiation in adipose tissue, while having no effect on liver or muscle tissues at this dose. These results show novel and separate mechanisms by which tea and EGCG may improve glucose tolerance and support a role for these compounds in obesity prevention.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Creatine monohydrate (CrM) supplementation appears to be relatively safe based on data from short-term and intermediate-term human studies and results from several therapeutic trials. The purpose of the current study was to characterize pathological changes after intermediate-term and long-term CrM supplementation in mice [healthy control and SOD1 (G93A) transgenic] and rats (prednisolone and nonprednisolone treated). Histological assessment (18-20 organs/tissues) was performed on G93A mice after 159 days, and in Sprague-Dawley rats after 365 days, of CrM supplementation (2% wt/wt) compared with control feed. Liver histology was also evaluated in CD-1 mice after 300 days of low-dose CrM supplementation (0.025 and 0.05 g · kg-1 · day-1) and in Sprague-Dawley rats after 52 days of CrM supplementation (2% wt/wt) with and without prednisolone. Areas of hepatitis were observed in the livers of the CrM-supplemented G93A mice (P < 0.05), with no significant inflammatory lesions in any of the other 18-20 tissues/organs that were evaluated. The CD-1 mice also showed significant hepatic inflammatory lesions (P < 0.05), yet there was no negative effect of CrM on liver histology in the Sprague-Dawley rats after intermediate-term or long-term supplementation nor was inflammation seen in any other tissues/organs (P = not significant). Dietary CrM supplementation can induce inflammatory changes in the liver of mice, but not rats. The observed inflammatory changes in the murine liver must be considered in the evaluation of hepatic metabolism in CrM-supplemented mice. Species differences must be considered in the evaluation of toxicological and physiological studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Type 2 diabetes mellitus is a metabolic disease characterised by defects in insulin secretion and insulin action and disturbances in carbohydrate, fat and protein metabolism. Hepatic insulin resistance contributes to hyperglycemia and also leads to disturbances in fat metabolism in type 2 diabetes. Psammomys obesus is a unique poly genie animal model of type 2 diabetes and obesity, ideally suited for studies examining physiological and genetic aspects of these diseases. To identify metabolic abnormalities potentially contributing to the obesity and diabetes phenotype in P. obesus, indirect calorimetry was used to characterise whole body energy expenditure and substrate utilisation. Lean-NGT, obese-IGT and obese-diabetic animals were examined in fed and fasted states and following 14 days of dietary energy restriction. Energy expenditure and fat oxidation were elevated in the obese-IGT and obese-diabetic groups in proportion to body weight. Glucose oxidation was not different between groups. Obese-diabetic P. obesus displayed elevated nocturnal blood glucose levels and fat oxidation. Following 14 days of dietary energy restriction, body weight was reduced and plasma insulin and blood glucose levels were normalised in all groups. Glucose oxidation was reduced and fat oxidation was increased. After 24 hours of fasting, plasma insulin and blood glucose levels were normalised in all groups. Energy expenditure and glucose oxidation were greatly reduced and fat oxidation was increased. Following either dietary energy restriction or fasting, energy expenditure, glucose oxidation and fat oxidation were not different between groups of P. obesus. Energy expenditure and whole body substrate utilisation in P. obesus was similar to that seen in humans. P. obesus responded normally to short term fasting and dietary energy restriction. Elevated nocturnal fat oxidation rates and plasma glucose levels in obese-diabetic P. obesus may be an important factor in the pathogenesis of obesity and type 2 diabetes in these animals. These studies have further validated P. obesus as an ideal animal model of type 2 diabetes and obesity. It was hypothesised that many genes in the liver of P. obesus involved in glucose and fat metabolism would be differentially expressed between lean-NGT and obese-diabetic animals. These genes may represent significant factors in the pathophysiology of type 2 diabetes. Two gene discovery experiments were conducted using suppression subtractive hybridisation (SSH) to enrich a cDNA library for differentially expressed genes. Experiment 1 used cDNA dot blots to screen 576 clones with cDNA derived from lean-NGT and obese-diabetic animals. 6 clones were identified as overexpressed in lean-NGT animals and 6 were overexpressed in obese-diabetic animals. These 12 clones were sequenced and SYBR-Green PCR was used to confirm differential gene expression. 4 genes were overexpressed (≥1.5 fold) in lean-NGT animals and 4 genes were overexpressed (≥1.5 fold) in obese-diabetic animals. To explore the physiological role of these genes, hepatic gene expression was examined in several physiological conditions. One gene, encoding thyroxine binding globulin (TBG), was confirmed as overexpressed in lean-NGT P. obesus with ad libitum access to food, relative to both obese-IGT and obese-diabetic animals. TBG expression decreased with fasting in all animals. Fasting TBG expression remained greater in lean-NGT animals than obese-IGT and obese-diabetic animals. TBG expression was not significantly affected by dietary energy restriction. TBG is involved in thyroid metabolism and is potentially involved in the regulation of energy expenditure. Fasting increased hepatic site 1 protease (SIP) expression in lean-NGT animals but was not significantly affected in obese-IGT and obese-diabetic animals. SIP expression was not significantly affected by dietary energy restriction. SIP is involved in the proteolytic processing of steroid response element binding proteins (SREBP). SREBPs are insulin responsive and are known to be involved in lipid metabolism. Gene expression studies found TBG and SIP were associated with obesity and diabetes. Future research will determine whether TBG and SIP are important in the pathogenesis of these diseases. Experiment 2 used SSH and cDNA microarray to screen 8064 clones. 223 clones were identified as overexpressed in lean-NGT P. obesus and 274 clones were overexpressed in obese-diabetic P. obesus (p ≤0.05). The 9 most significantly differentially expressed clones identified from the microarray screen were sequenced (p ≤0.01). 7 novel genes were identified as well as; sulfotransferase related protein and albumin. These 2 genes have not previously been associated with either type 2 diabetes or obesity. It is unclear why hepatic expression of these genes may differ between lean-NGT and obese-diabetic groups of P. obesus. Subsequent studies will explore the potential role of these novel and known genes in the pathophysiology of type 2 diabetes.