911 resultados para Co-criação de valor


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe the synthesis, crystal structure, magnetic and electrochemical characterization of new rock salt-related oxides of formula, Li3M2RuO6 (M=Co, Ni). The M=Co oxide adopts the LiCoO2 (R-3m) structure, where sheets of LiO6 and (Co-2/Ru)O-6 octahedra are alternately stacked along the c-direction. The M=Ni oxide also adopts a similar layered structure related to Li2TiO3, where partial mixing of Li and Ni/Ru atoms lowers the symmetry to monoclinic (C2/c). Magnetic susceptibility measurements reveal that in Li3Co2RuO6, the oxidation states of transition metal ions are Co3+ (S=0), Co2+ (S=1/2) and Ru4+ (S=1), all of them in low-spin configuration and at 10 K, the material orders antiferromagnetically. Analogous Li3Ni2RuO6 presents a ferrimagnetic behavior with a Curie temperature of 100 K. The differences in the magnetic behavior have been explained in terms of differences in the crystal structure. Electrochemical studies correlate well with both magnetic properties and crystal structure. Li-transition metal intermixing may be at the origin of the more impeded oxidation of Li3Ni2RuO6 when compared to Li3CO2RuO6. Interestingly high first charge capacities (between ca. 160 and 180 mAh g(-1)) corresponding to ca. 2/3 of theoretical capacity are reached albeit, in both cases, capacity retention and cyclability are not satisfactory enough to consider these materials as alternatives to LiCoO2. (C) 2013 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ceria, because of its excellent redox behavior and oxygen storage capacity, is used as a catalyst for several technologically important reactions. In the present study, different morphologies of nano-CeO2 (rods, cubes, octahedra) were synthesized using the hydrothermal route. An ultrafast microwave-assisted method was used to efficiently attach Pt particles to the CeO2 polyhedra. These nanohybrids were tested as catalysts for the CO oxidation reaction. The CeO2/Pt catalyst with nanorods as the support was found to be the most active catalyst. XPS and IR spectroscopy measurements were carried out in order to obtain a mechanistic understanding and it was observed that the adsorbed carbonates with lower stability on the reactive planes of nanorods and cubes are the major contributor to this enhanced catalytic activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although weak interactions, such as C-H center dot center dot center dot O and pi-stacking, are generally considered to be insignificant, it is their reorganization that holds the key for many a solid-state phenomenon, such as phase transitions, plastic deformation, elastic flexibility, and mechanochromic luminescence in solid-state fluorophores. Despite this, the role of weak interactions in these dynamic phenomena is poorly understood. In this study, we investigate two co-crystal polymorphs of caffeine:4-chloro-3-nitrobenzoic acid, which have close structural similarity (2D layered structures), but surprisingly show distinct mechanical behavior. Form I is brittle, but shows shear-induced phase instability and, upon grinding, converts to Form II, which is soft and plastically shearable. This observation is in contrast to those reported in earlier studies on aspirin, wherein the metastable drug forms are softer and convert to stable and harder forms upon stressing To establish a molecular level understanding, have investigated the two co-crystal polymorphs I and II by single crystal X-ray diffraction, nanoindentation to quantify mechanical properties, and theoretical calculations. The lower hardness (from nanoindentation) and smooth potential surfaces (from theoretical studies) for shearing of layers in Form II allowed us to rationalize the role of stronger intralayer (sp(2))C-H center dot center dot center dot O and nonspecific interlayer pi-stacking interactions in the structure of II. Although the Form I also possesses the same type of interactions, its strength is clearly opposite, that is, weaker intralayer (sp(3))C-H center dot center dot center dot O and specific interlayer pi-stacking interactions. Hence, Form I is harder than Form IL Theoretical calculations and indentation on (111) of Form I suggested the low resistance of this face to mechanical stress; thus, Form I converts to II upon mechanical action. Hence, our approach demonstrates the usefulness of multiple techniques for establishing the role of weak noncovalent interactions in solid-state dynamic phenomena, such as stress induced phase transformation, and hence is important in the context of solid-state pharmaceutical chemistry and crystal engineering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Skutterudites Fe(0.)2Co(3.8)Sb(12),Te-x (x = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6) were synthesized by induction melting at 1273 K, followed by annealing at 923 K for 144 h. X-ray powder diffraction and electron microprobe analysis confirmed the presence of the skutterudite phase as the main phase. The temperature-dependent transport properties were measured for all the samples from 300 to 818 K. A positive Seebeck coefficient (holes are majority carriers) was obtained in Fe0.2Co3.8Sb 12 in the whole temperature range. Thermally excited carriers changed from n-type to p-type in Fe(0.)2Co(3.8)Sb(12),Te-x 19Te0.1 at 570 K, while in all the other samples, Fe(0.)2Co(3.8)Sb(12),Te-x (x = 0.2, 0.3, 0.4, 0.5, 0.6) exhibited negative Seebeck coefficients in the entire temperature range measured. Whereas for the alloys up to x = 0.2 (Fe(0.)2Co(3.8)Sb(12),Te-x ) the electrical resistivity decreased by charge compensation, it increased for x> 0.2 with an increase in Te content as a result of an increase in the electron concentration. The thermal conductivity decreased with Te substitution owing to carrier phonon scattering and point defect scattering. The maximum dimensionless thermoelectric figure of merit, ZT = 1.04 at 818 K, was obtained with an optimized Te content for Fe0.2Co3.8Sb1 1.5Te0.5 and a carrier concentration of,,J1/ =- 3.0 x 1020 CM-3 at room temperature. Thermal expansion (a = 8.8 x 10-6 K-1), as measured for Fe(0.)2Co(3.8)Sb(12),Te-x , compared well with that of undoped Co4Sb12. A further increase in the thermoelectric figure of merit up to ZT = 1.3 at 820 K was achieved for Fe(0.)2Co(3.8)Sb(12),Te-x , applying severe plastic deformation in terms of a high-pressure torsion process. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Direct current electrodeposition of Co-P alloy coatings were carried out using gluconate bath and they were characterized by employing techniques like XRD, FESEM, DSC and XPS. Broad XRD lines demonstrate the amorphous nature of Co-P coatings. Spherical and rough nodules are observed on the surface of coatings as seen from FESEM images. Three exothermic peaks around 290, 342 and 390 degrees C in DSC profiles of Co-P coatings could be attributed to the crystallization and formation of Co2P phase in the coatings. As-deposited coatings consist of Co metal and oxidized Co species as revealed by XPS studies. Bulk alloy P (P delta-) as well as oxidized P (P5+) are present on the surface of coatings. Concentrations of Co metal and P delta- increase with successive sputtering of the coating. Observed microhardness value is 1005 HK when Co-P coating obtained from 10 g L-1 NaH2PO2 is heated at 400 degrees C that is comparable with hard chromium coatings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Undoped and (Co, Ag) co-doped ZnO nanostructure powders are synthesized by chemical precipitation method without using any capping agent and annealed in air ambient at 500 A degrees C for 1 h. Here, the Ag concentration is fixed at 5 mol% and Co concentration is increased from 0 to 5 mol%. The X-ray diffraction studies reveal that undoped and doped ZnO powders consist of pure hexagonal structure and nano-sized crystallites. The novel Raman peak at 530 cm(-1) has corroborated with the Co doped ZnO nanoparticles. Moreover, the PL studies reveal that as the Co doping concentration increases and it enters into ZnO lattice as substitutional dopant, it leads to the increase of oxygen vacancies (Vo) and zinc interstitials (Zn-i). From the magnetization measurements, it is noticed that the co-doped ZnO nanostructures exhibit considerably robust ferromagnetism i.e. 4.29 emu g(-1) even at room temperature. These (Co, Ag) co-doped ZnO nanopowders can be used in the fabrication of spintronic and optoelectronic device applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present work, Co1-xMnxFe2O4 nanoparticles were synthesized by the low-temperature auto-combustion method. The thermal decomposition process was investigated by means of differential and thermal gravimetric analysis (TG-DTA) that showed the precursor yield the final product above 450 degrees C. The phase purity and crystal lattice symmetry were estimated from X-ray diffraction (XRD). Microstructural features observed by scanning electron microscopy (SEM) demonstrates that the fine clustered particles were formed with an increase in average grain size with Mn2+ content. Fourier transform infrared spectroscopy (FTIR) study confirms the formation of spinel ferrite. Room temperature magnetization measurements showed that the magnetization M-s increases from 29 to 60 emu/g and H-c increases from 13 to 28 Oe with increase in Mn2+ content, which implies that these materials may be applicable for magnetic data storage and recording media. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study presents the synthesis, characterization, and kinetics of steam reforming of methane and water gas shift (WGS) reactions over highly active and coke resistant Zr0.93Ru0.05O2-delta. The catalyst showed high activity at low temperatures for both the reactions. For WGS reaction, 99% conversion of CO with 100% H-2 selectivity was observed below 290 degrees C. The detailed kinetic studies including influence of gas phase product species, effect of temperature and catalyst loading on the reaction rates have been investigated. For the reforming reaction, the rate of reaction is first order in CH4 concentration and independent of CO and H2O concentration. This indicates that the adsorptive dissociation of CH4 is the rate determining step. The catalyst also showed excellent coke resistance even under a stoichiometric steam/carbon ratio. A lack of CO methanation activity is an important finding of present study and this is attributed to the ionic nature of Ru species. The associative mechanism involving the surface formate as an intermediate was used to correlate experimental data. Copyright (C) 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transcription from rrn and a number of other promoters is regulated by initiating ribonucleotides (iNTPs) and guanosine tetra/penta phosphate (p)ppGpp], either by strengthening or by weakening of the RNA polymerase (RNAP)-promoter interactions during initiation. Studies in Escherichia coli revealed the importance of a sequence termed discriminator, located between -10 and the transcription start site of the responsive promoters in this mode of regulation. Instability of the open complex at these promoters is attributed to the lack of stabilizing interactions between the suboptimal discriminator and the 1.2 region of sigma 70 (Sig70) in RNAP holoenzyme. We demonstrate a different pattern of interaction between the promoters and sigma A (SigA) of Mycobacterium tuberculosis to execute similar regulation. Instead of cytosine and methionine, thymine at three nucleotides downstream to -10 element and leucine 232 in SigA are found to be essential for iNTPs and pppGpp mediated response at the rrn and gyr promoters of the organism. The specificity of the interaction is substantiated by mutational replacements, either in the discriminator or in SigA, which abolish the nucleotide mediated regulation in vitro or in vivo. Specific yet distinct bases and the amino acids appear to have co-evolved' to retain the discriminator-sigma 1.2 region regulatory switch operated by iNTPs/pppGpp during the transcription initiation in different bacteria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermal degradation of poly(n-butyl methacrylate-co-alkyl acrylate) was compared with ultrasonic degradation. For this purpose, different compositions of poly (n-butyl methacrylate-co-methyl acrylate) (PBMAMA) and a particular composition of poly(n-butyl methacrylate-co-ethyl acrylate) (PBMAEA) and poly(n-butyl methacrylate-co-butyl acrylate) (PBMABA) were synthesized and characterized. The thermal degradation of polymers shows that the poly(alkyl acrylates) degrade in a single stage by random chain scission and poly(n-butyl methacrylate) degrades in two stages. The number of stages of thermal degradation of copolymers was same as the majority component of the copolymer. The activation energy corresponding to random chain scission increased and then decreased with an increase of n-butyl methacrylate fraction in copolymer. The effect of methyl acrylate content, alkyl acrylate substituent, and solvents on the ultrasonic degradation of these copolymers was investigated. A continuous distribution kinetics model was used to determine the degradation rate coefficients. The degradation rate coefficient of PBMAMA varied nonlinearly with n-butyl methacrylate content. The degradation of poly (n-butyl methacrylate-co-alkyl acrylate) followed the order: PBMAMA < PBMAEA < PBMABA. The variation in the degradation rate constant with composition of the copolymer was discussed in relation to the competing effects of the stretching of the polymer in solution and the electron displacement in the main chain. (C) 2012 Society of Plastics Engineers

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrochlorothiazide (HCT), C7H8ClN3O4S2, is a diuretic BCS (Biopharmaceutics Classification System) class IV drug which has primary and secondary sulfonamide groups. To modify the aqueous solubility of the drug, co-crystals with biologically safe co-formers were screened. Multi-component molecular crystals of HCT were prepared with nicotinic acid, nicotinamide, succinamide, p-aminobenzoic acid, resorcinol and pyrogallol using liquid-assisted grinding. The co-crystals were characterized by FT-IR spectroscopy, powder X-ray diffraction (PXRD) and differential scanning calorimetry. Single crystal structures were obtained for four of them. The N-H center dot center dot center dot O sulfonamide catemer synthons found in the stable polymorph of pure HCT are replaced in the co-crystals by drug-co-former heterosynthons. Isostructural co-crystals with nicotinic acid and nicotinamide are devoid of the common sulfonamide dimer/catemer synthons. Solubility and stability experiments were carried out for the co-crystals in water (neutral pH) under ambient conditions. Among the six binary systems, the co-crystal with p-aminobenzoic acid showed a sixfold increase in solubility compared with pure HCT, and stability up to 24 h in an aqueous medium. The co-crystals with nicotinamide, resorcinol and pyrogallol showed only a 1.5-2-fold increase in solubility and transformed to HCT within 1 h of the dissolution experiment. An inverse correlation is observed between the melting points of the co-crystals and their solubilities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes a spatio-temporal registration approach for speech articulation data obtained from electromagnetic articulography (EMA) and real-time Magnetic Resonance Imaging (rtMRI). This is motivated by the potential for combining the complementary advantages of both types of data. The registration method is validated on EMA and rtMRI datasets obtained at different times, but using the same stimuli. The aligned corpus offers the advantages of high temporal resolution (from EMA) and a complete mid-sagittal view (from rtMRI). The co-registration also yields optimum placement of EMA sensors as articulatory landmarks on the magnetic resonance images, thus providing richer spatio-temporal information about articulatory dynamics. (C) 2014 Acoustical Society of America

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Y3Fe5O12 (YIG) nanopowders were synthesised at different pH using co-precipitation method. The effect of pH on the phase formation of YIG is characterised using XRD, TEM, FTIR and TG/DTA. From the Scherer formula, the particle sizes of the powders were found to be 13, 19 and 28 nm for pH=10, 11 and 12 respectively. It is found that as the pH of the solution increase the particle size is also increases. It is also clear from the TG/DTA curves that as the pH is increasing the weight losses were found to be small. The nanopowders were sintered at 600, 700, 800 and 900 degrees C for 5 h using conventional sintering method. The phase formation is completed at 800 degrees C/5 h which is correlated with TG/DTA. The average grain size of the samples is found to be similar to 161 nm. The high values of M-s=23 emu g(-1) and H-c=22 Oe were recorded for the sample sintered at 900 degrees C.