975 resultados para protein localization


Relevância:

40.00% 40.00%

Publicador:

Resumo:

To investigate the effect of exercise on protein kinase C (PKC) activity and localization in human skeletal muscle, eight healthy men performed cycle  ergometer exercise for 40 min at 76±1% the peak pulmonary O2 uptake (VO2peak), with muscle samples obtained at rest and after 5 and 40 min of exercise. PKC expression, phosphorylation and activities were examined by immunoblotting and in vitro kinase assays of fractionated and whole tissue preparations. In response to exercise, total PKC activity was slightly higher at 40 min in an enriched membrane fraction, and using a pSer-PKC-substrate motif antibody it was revealed that exercise increased the serine phosphorylation of a ∼50 kDa protein. There were no changes in conventional PKC (cPKC) or PKCθ activities; however, atypical PKC (aPKC) activity was ∼70% higher at 5 and 40 min, and aPKC expression and Thr410/403 phosphorylation were unaltered by exercise. There were no effects of exercise on the abundance of PKCα, PKCδ, PKCθ and aPKC within cytosolic or enriched membrane fractions of skeletal muscle. These data indicate that aPKC, but not cPKC or PKCθ, are activated by exercise in contracting muscle suggesting a potential role for aPKC in the regulation of skeletal muscle function and metabolism during exercise in humans.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

ATP7A is a P-type ATPase that regulates cellular copper homeostasis by activity at the trans-Golgi network (TGN) and plasma membrane (PM), with the location normally governed by intracellular copper concentration. Defects in ATP7A lead to Menkes disease or its milder variant, occipital horn syndrome or to a newly discovered condition, ATP7A-related distal motor neuropathy (DMN), for which the precise pathophysiology has been obscure. We investigated two ATP7A motor neuropathy mutations (T994I, P1386S) previously associated with abnormal intracellular trafficking. In the patients' fibroblasts, total internal reflection fluorescence microscopy indicated a shift in steady-state equilibrium of ATP7AT994I and ATP7AP1386S, with exaggerated PM localization. Transfection of Hek293T cells and NSC-34 motor neurons with the mutant alleles tagged with the Venus fluorescent protein also revealed excess PM localization. Endocytic retrieval of the mutant alleles from the PM to the TGN was impaired. Immunoprecipitation assays revealed an abnormal interaction between ATP7AT994I and p97/VCP, an ubiquitin-selective chaperone which is mutated in two autosomal dominant forms of motor neuron disease: amyotrophic lateral sclerosis and inclusion body myopathy with early-onset Paget disease and fronto-temporal dementia. Small-interfering RNA (SiRNA) knockdown of p97/VCP corrected ATP7AT994I mislocalization. Flow cytometry documented that non-permeabilized ATP7AP1386S fibroblasts bound a carboxyl-terminal ATP7A antibody, consistent with relocation of the ATP7A di-leucine endocytic retrieval signal to the extracellular surface and partially destabilized insertion of the eighth transmembrane helix. Our findings illuminate the mechanisms underlying ATP7A-related DMN and establish a link between p97/VCP and genetically distinct forms of motor neuron degeneration.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The localization of the glucocorticoid-inducible protein annexin 1 (ANX-1) in leukocytes during the process of experimental inflammation has been studied using immunocytochemistry. ANX-1 immunoreactivity was detected in extravasated neutrophils and eosinophils as well as in resident tissue mast cells. Following injection of carrageenin, the mesenteric tissue was highly inflamed with large presence of leukocytes (predominantly neutrophils with a small percentage of eosinophils) adherent to post-capillary venules and extravasated in the perivascular tissue. ANX-1 immunoreactivity was detected in the cytosol of neutrophils and eosinophils mainly associated with granules and/or vesicles. A good degree of localization in the endosomes was observed in the neutrophils, In both cell types, some ANX-1 immunoreactivity in the nucleus and in the plasma membrane was also detected. Resident mast cells were also activated. Mast cells were positive for ANX-1, without apparent changes in protein content in relation to their activation status. Degranulated mast cells still presented ANX-1 associated with the granule matrix. In conclusion, this study demonstrated the presence of ANX-1 in leukocytes that play a central role in the host inflammatory response. These are the extravasating polymorphonuclear cells, or the resident mast cells. These data provide morphological support to the notion that endogenous and exogenous ANX-1 are able to modulate the reactivity of these cell types, and more generally, of the experimental inflammatory reaction.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Electron microscopy and immunolabelling with antiserum specific to cucumber mosaic virus coat protein were used to examine tobacco leaf cells infected by cucumber mosaic virus isolated from Catharanthus roseus (CMV-Cr). Crystalline and amorphous inclusions in the vacuoles were the most obvious cytological modifications seen. Immunogold labelling indicated that the crystalline inclusion was made up of virus particles and amorphous inclusions contained coat protein. Rows of CMV-Cr particles were found between membranes of dictyosomes, but membranous bodies and tonoplast-associated vesicles were not evident. Virus particles and/or free coat protein were easily detected in the cytoplasm by immunolabelling. No gold labelling was found within nuclei, chloroplasts and mitochondria.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of this study was to evaluate the expression of osteocalcin protein during the alveolar bone healing process in rats. Twenty four rats were used in this study and, after anesthetic induction, they had their right upper incisors extracted. At 7, 14, 21 and 28 days after the tooth extraction, the animals were injected 4% formaldehyde. The histological tissue pieces were colored in hematoxilin and eosin and the immunohistochemistry reaction for osteocalcin was performed. At seven days lesser neoformed trabeculae bone and a small quantity of osteocalcin labeling were observed. At 14 and 21 days a larger quantity of neoformed trabeculae bone and higher osteocalcin values were detected. At 28 days the largest quantity of neoformed trabeculae bone and a decrease on the amount of osteocalcin immunolabelling were noticed. According to our results and considering the limits of the present study it is possible to conclude that a greater osteocalcin expression is observed at 14 and 21 days postoperatively, characterizing the periods when intense mineralization of the bone tissue occurs during the alveolar bone healing process.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Paracoccidoides brasiliensis adhesion to lung epithelial cells is considered an essential event for the establishment of infection and different proteins participate in this process. One of these proteins is a 30 kDa adhesin, pI 4.9 that was described as a laminin ligand in previous studies, and it was more highly expressed in more virulent P. brasiliensis isolates. This protein may contribute to the virulence of this important fungal pathogen. Using Edman degradation and mass spectrometry analysis, this 30 kDa adhesin was identified as a 14-3-3 protein. These proteins are a conserved group of small acidic proteins involved in a variety of processes in eukaryotic organisms. However, the exact function of these proteins in some processes remains unknown. Thus, the goal of the present study was to characterize the role of this protein during the interaction between the fungus and its host. To achieve this goal, we cloned, expressed the 14-3-3 protein in a heterologous system and determined its subcellular localization in in vitro and in vivo infection models. Immunocytochemical analysis revealed the ubiquitous distribution of this protein in the yeast form of P. brasiliensis, with some concentration in the cytoplasm. Additionally, this 14-3-3 protein was also present in P. brasiliensis cells at the sites of infection in C57BL/6 mice intratracheally infected with P. brasiliensis yeast cells for 72 h (acute infections) and 30 days (chronic infection). An apparent increase in the levels of the 14-3-3 protein in the cell wall of the fungus was also noted during the interaction between P. brasiliensis and A549 cells, suggesting that this protein may be involved in host-parasite interactions, since inhibition assays with the protein and this antibody decreased P. brasiliensis adhesion to A549 epithelial cells. Our data may lead to a better understanding of P. brasiliensis interactions with host tissues and paracoccidioidomycosis pathogenesis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The amyloid precursor protein (APP) is a type I transmembrane glycoprotein, which resembles a cell surface receptor, comprising a large ectodomain, a single spanning transmembrane part and a short C-terminal, cytoplasmic domain. It belongs to a conserved gene family, with over 17 members, including also the two mammalian APP homologues proteins APLP1 and APLP2 („amyloid precursor like proteins“). APP is encoded by 19 exons, of which exons 7, 8, and 15 can be alternatively spliced to produce three major protein isoforms APP770, APP751 and APP695, reflecting the number of amino acids. The neuronal APP695 is the only isoform that lacks a Kunitz Protease Inhibitor (KPI) domain in its extracellular portion whereas the two larger, peripheral APP isoforms, contain the 57-amino-acid KPI insert. rnRecently, research effort has suggested that APP metabolism and function is thought to be influenced by homodimerization and that the oligomerization state of APP could also play a role in the pathology of Alzheimer's disease (AD), by regulating its processing and amyloid beta production. Several independent studies have shown that APP can form homodimers within the cell, driven by motifs present in the extracellular domain, as well as in the juxtamembrane (JM) and transmembrane (TM) regions of the molecule, whereby the exact molecular mechanism and the origin of dimer formation remains elusive. Therefore, we focused in our study on the actual subcellular origin of APP homodimerization within the cell, an underlying mechanism, and a possible impact on dimerization properties of its homologue APLP1. Furthermore, we analyzed homodimerization of various APP isoforms, in particular APP695, APP751 and APP770, which differ in the presence of a Kunitz-type protease inhibitor domain (KPI) in the extracellular region. In order to assess the cellular origin of dimerization under different cellular conditions, we established a mammalian cell culture model-system in CHO-K1 (chinese hamster ovary) cells, stably overexpressing human APP, harboring dilysine based organelle sorting motifs at the very C-terminus [KKAA-Endoplasmic Reticulum (ER); KKFF-Golgi]. In this study we show that APP exists as disulfide-bound, SDS-stable dimers, when it was retained in the ER, unlike when it progressed further to the cis-Golgi, due to the KKFF ER exit determinant. These stable APP complexes were isolated from cells, and analyzed by SDS–polyacrylamide gel electrophoresis under non-reducing conditions, whereas strong denaturing and reducing conditions completely converted those dimers to monomers. Our findings suggested that APP homodimer formation starts early in the secretory pathway and that the unique oxidizing environment of the ER likely promotes intermolecular disulfide bond formation between APP molecules. We particularly visualized APP dimerization employing a variety of biochemical experiments and investigated the origin of its generation by using a Bimolecular Fluorescence Complementation (BiFC) approach with split GFP-APP chimeras. Moreover, using N-terminal deletion constructs, we demonstrate that intermolecular disulfide linkage between cysteine residues, exclusively located in the extracellular E1 domain, represents another mechanism of how an APP sub-fraction can dimerize within the cell. Additionally, mutational studies revealed that cysteines at positions 98 and 105, embedded in the conserved loop region within the E1 domain, are critical for interchain disulfide bond formation. Using a pharmacological treatment approach, we show that once generated in the oxidative environment of the ER, APP dimers remain stably associated during transport, reaching the plasma membrane. In addition, we demonstrate that APP isoforms, encompassing the KPI domain, exhibit a strongly reduced ability to form cis-directed dimers in the ER, whereas trans-directed cell aggregation of Drosophila Schneider (S2)-cells was isoform independent, mediating cell-cell contacts. Thus, suggesting that steric properties of KPI-APP might be the cause for weaker cis-interaction in the ER, compared to APP695. Finally, we provide evidence that APP/APLP1 heterointeractions are likewise initiated in the ER, suggesting a similar mechanism for heterodimerization. Therefore, dynamic alterations of APP between monomeric, homodimeric, and possibly heterodimeric status could at least partially explain some of the variety in the physiological functions of APP.rn

Relevância:

40.00% 40.00%

Publicador:

Resumo:

To determine the subcellular localization of the tegument proteins pp65, pp71, pp150, and pp28 as fusions to one of several fluorescent proteins. Since these tegument proteins play pivotal roles in several stages of the viral life cycle, knowledge of where and the mechanism of how these proteins localize upon release could result in a better understanding of their function during a lytic infection as well as assist in the development of an effective, novel antiviral treatment.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

valois (vls) was identified as a posterior group gene in the initial screens for Drosophila maternal-effect lethal mutations. Despite its early genetic identification, it has not been characterized at the molecular level until now. We show that vls encodes a divergent WD domain protein and that the three available EMS-induced point mutations cause premature stop codons in the vls ORF. We have generated a null allele that has a stronger phenotype than the EMS mutants. The vlsnull mutant shows that vls+ is required for high levels of Oskar protein to accumulate during oogenesis, for normal posterior localization of Oskar in later stages of oogenesis and for posterior localization of the Vasa protein during the entire process of pole plasm assembly. There is no evidence for vls being dependent on an upstream factor of the posterior pathway, suggesting that Valois protein (Vls) instead acts as a co-factor in the process. Based on the structure of Vls, the function of similar proteins in different systems and our phenotypic analysis, it seems likely that vls may promote posterior patterning by facilitating interactions between different molecules.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The multifunctional Ca$\sp{2+}$/calmodulin-dependent protein kinase II (CaM kinase) is a Ser/Thr directed protein kinase that participates in diverse Ca$\sp{2+}$ signaling pathways in neurons. The function of CaM kinase depends upon the ability of subunits to form oligomers and to interact with other proteins. Oligomerization is required for autophosphorylation which produces significant functional changes that include Ca$\sp{2+}$/calmodulin-independent activity and calmodulin trapping. Associations with other proteins localize CaM kinase to specific substrates and effectors which serves to optimize the efficiency and speed of signal transduction. In this thesis, we investigate the interactions that underlie the appropriate positioning of CaM kinase activity in cells. We demonstrate that the subcellular distribution of CaM kinase is dynamic in hippocampal slices exposed to anoxic/aglycemic insults and to high K$\sp{+}$-induced depolarization. We determine the localization of CaM kinase domains expressed in neurons and PC-12 cells and find that the C-terminal domain of the $\alpha$ subunit is necessary for localization to dendrites. Moreover, monomeric forms of the enzyme gain access to the nucleus. Attempts made to identify novel CaM kinase binding proteins using the yeast two-hybrid system resulted in the isolation of hundreds of positive clones. Those that have been sequenced are identical to CaM kinase isoforms. Finally, we report the discovery of specific regions within the C-terminal domain that are necessary and sufficient for subunit-subunit interactions. Differences between the $\alpha$ and $\beta$ isoforms were discovered that indicate unique structural requirements for oligomerization. A model for how CaM kinase subunits interact to form holoenzymes and how structural heterogeneity might influence CaM kinase function is presented. ^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Werner Syndrome (WS) is a human genetic disorder with many features of premature aging. The gene defective in WS (WRN) has been cloned and encodes a protein homologous to several helicases, including Escherichia coli RecQ, the human Bloom syndrome protein (BLM), and Saccharomyces cerevisiae Sgs1p. To better define the function of WRN protein we have determined its subcellular localization. Indirect immunofluorescence using polyclonal anti-human WRN shows a predominant nucleolar localization. Studies of WRN mutant cells lines confirmed the specificity of antibody recognition. No difference was seen in the subcellular localization of the WRN protein in a variety of normal and transformed human cell lines, including both carcinomas and sarcomas. The nucleolar localization of human WRN protein was supported by the finding that upon biochemical subcellular fractionation, WRN protein is present in an increased concentration in a subnuclear fraction enriched for nucleolar proteins. We have also determined the subcellular localization of the mouse WRN homologue (mWRN). In contrast to human WRN protein, mWRN protein is present diffusely throughout the nucleus. Understanding the function of WRN in these organisms of vastly differing lifespan may yield new insights into the mechanisms of lifespan determination.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this work, we describe the isolation of a new cDNA encoding an NADP-dependent isocitrate dehydrogenase (ICDH). The nucleotide sequence in its 5′ region gives a deduced amino acid sequence indicative of a targeting peptide. However, even if this cDNA clearly encodes a noncytosolic ICDH, it is not possible to say from the targeting peptide sequence to which subcellular compartment the protein is addressed. To respond to this question, we have transformed tobacco plants with a construct containing the entire targeting signal-encoding sequence in front of a modified green fluorescent protein (GFP) gene. This construct was placed under the control of the cauliflower mosaic virus 35S promoter, and transgenic tobacco plants were regenerated. At the same time, and as a control, we also have transformed tobacco plants with the same construct but lacking the nucleotide sequence corresponding to the ICDH-targeting peptide, in which the GFP is retained in the cytoplasm. By optical and confocal microscopy of leaf epiderm and Western blot analyses, we show that the putative-targeting sequence encoded by the cDNA addresses the GFP exclusively into the mitochondria of plant cells. Therefore, we conclude that this cDNA encodes a mitochondrial ICDH.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The capsid protein of hepatitis B virus, consisting of an “assembly” domain (residues 1–149) and an RNA-binding “protamine” domain (residues 150–183), assembles from dimers into icosahedral capsids of two different sizes. The C terminus of the assembly domain (residues 140–149) functions as a morphogenetic switch, longer C termini favoring a higher proportion of the larger capsids, it also connects the protamine domain to the capsid shell. We now have defined the location of this peptide in capsids assembled in vitro by engineering a mutant assembly domain with a single cysteine at its C terminus (residue 150), labeling it with a gold cluster and visualizing the cluster by cryo-electron microscopy. The labeled protein is unimpaired in its ability to form capsids. Our density map reveals a single undecagold cluster under each fivefold and quasi-sixfold vertex, connected to sites at either end of the undersides of the dimers. Considering the geometry of the vertices, the C termini must be more crowded at the fivefolds. Thus, a bulky C terminus would be expected to favor formation of the larger (T = 4) capsids, which have a greater proportion of quasi-sixfolds. Capsids assembled by expressing the full-length protein in Escherichia coli package bacterial RNAs in amounts equivalent to the viral pregenome. Our density map of these capsids reveals a distinct inner shell of density—the RNA. The RNA is connected to the protein shell via the C-terminal linkers and also makes contact around the dimer axes.