491 resultados para cornea


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: To investigate the short term influence of imposed monocular defocus upon human optical axial length (the distance from anterior cornea to retinal pigment epithelium) and ocular biometrics. Methods: Twenty-eight young adult subjects (14 myopes and 14 emmetropes) had eye biometrics measured before and then 30 and 60 minutes after exposure to monocular (right eye) defocus. Four different monocular defocus conditions were tested, each on a separate day: control (no defocus), myopic (+3 D defocus), hyperopic (-3 D defocus) and diffuse (0.2 density Bangerter filter) defocus. The fellow eye was optimally corrected (no defocus). Results: Imposed defocus caused small but significant changes in optical axial length (p<0.0001). A significant increase in optical axial length (mean change +8 ± 14 μm, p=0.03) occurred following hyperopic defocus, and a significant reduction in optical axial length (mean change -13 ± 14 μm, p=0.0001) was found following myopic defocus. A small increase in optical axial length was observed following diffuse defocus (mean change +6 ± 13 μm, p=0.053). Choroidal thickness also exhibited some significant changes with certain defocus conditions. No significant difference was found between myopes and emmetropes in the changes in optical axial length or choroidal thickness with defocus. Conclusions: Significant changes in optical axial length occur in human subjects following 60 minutes of monocular defocus. The bi-directional optical axial length changes observed in response to defocus implies the human visual system is capable of detecting the presence and sign of defocus and altering optical axial length to move the retina towards the image plane.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: To investigate the influence of soft contact lenses on regional variations in corneal thickness and shape while taking account of natural diurnal variations in these corneal parameters. Methods: Twelve young, healthy subjects wore 4 different types of soft contact lenses on 4 different days. The lenses were of two different materials (silicone hydrogel, hydrogel), designs (spherical, toric) and powers (–3.00, –7.00 D). Corneal thickness and topography measurements were taken before and after 8 hours of lens wear and on two days without lens wear, using the Pentacam HR system. Results: The hydrogel toric contact lens caused the greatest level of corneal thickening in the central (20.3 ± 10.0 microns) as well as peripheral cornea (24.1 ± 9.1 microns) (p < 0.001) with an obvious regional swelling of the cornea beneath the stabilizing zones. The anterior corneal surface generally showed slight flattening. All contact lenses resulted in central posterior corneal steepening and this was weakly correlated with central corneal swelling (p = 0.03) and peripheral corneal swelling (p = 0.01). Conclusions: There was an obvious regional corneal swelling apparent after wear of the hydrogel soft toric lenses, due to the location of the thicker stabilization zones of the toric lenses. However with the exception of the hydrogel toric lens, the magnitude of corneal swelling induced by the contact lenses over the 8 hours of wear was less than the natural diurnal thinning of the cornea over this same period.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thomas Young (1773-1829) carried out major pioneering work in many different subjects. In 1800 he gave the Bakerian Lecture of the Royal Society on the topic of the “mechanism of the eye”: this was published in the following year (Young, 1801). Young used his own design of optometer to measure refraction and accommodation, and discovered his own astigmatism. He considered the different possible origins of accommodation and confirmed that it was due to change in shape of the lens rather than to change in shape of the cornea or an increase in axial length. However, the paper also dealt with many other aspects of visual and ophthalmic optics, such as biometric parameters, peripheral refraction, longitudinal chromatic aberration, depth-of-focus and instrument myopia. These aspects of the paper have previously received little attention. We now give detailed consideration to these and other less-familiar features of Young’s work and conclude that his studies remain relevant to many of the topics which currently engage visual scientists.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: The aim of this study was to investigate the capabilities of laser scanning confocal microscopy (LSCM) for undertaking qualitative and quantitative investigations of the response of the bulbar conjunctiva to contact lens wear. Methods: LSCM was used to observe and measure morphological characteristics of the bulbar conjunctiva of 11 asymptomatic soft contact lens wearers and 11 healthy volunteer subjects (controls). Results: The appearance of the bulbar conjunctiva is consistent with known histology of this tissue based on light and electron microscopy. The thickness of the bulbar conjunctival epithelium of lens wearers (30.9 ± 1.1 μm) was less than that of controls (32.9 ± 1.1 μm) (P < 0.0001). Superficial and basal bulbar conjunctival epithelial cell densities in contact lens wearers were 91% and 79% higher, respectively, than that in controls (P < 0.0001). No difference was observed in goblet and Langerhans cell density between lens wearers and controls. Conjunctival microcysts were observed in greater numbers, and were larger in size, in lens wearers compared with controls. Conclusions: The effects of contact lens wear on the human bulbar conjunctiva can be investigated effectively at a cellular level using LSCM. The observations in this study suggest that contact lens wear can induce changes in the bulbar conjunctiva such as epithelial thinning and accelerated formation and enlargement of microcysts, increased epithelial cell density, but has no impact on goblet or Langerhans cell density.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aim/hypothesis Immune mechanisms have been proposed to play a role in the development of diabetic neuropathy. We employed in vivo corneal confocal microscopy (CCM) to quantify the presence and density of Langerhans cells (LCs) in relation to the extent of corneal nerve damage in Bowman's layer of the cornea in diabetic patients. Methods 128 diabetic patients aged 58±1 yrs with a differing severity of neuropathy based on Neuropathy Deficit Score (NDS—4.7±0.28) and 26 control subjects aged 53±3 yrs were examined. Subjects underwent a full neurological evaluation, evaluation of corneal sensation with non-contact corneal aesthesiometry (NCCA) and corneal nerve morphology using corneal confocal microscopy (CCM). Results The proportion of individuals with LCs was significantly increased in diabetic patients (73.8%) compared to control subjects (46.1%), P=0.001. Furthermore, LC density (no/mm2) was significantly increased in diabetic patients (17.73±1.45) compared to control subjects (6.94±1.58), P=0.001 and there was a significant correlation with age (r=0.162, P=0.047) and severity of neuropathy (r=−0.202, P=0.02). There was a progressive decrease in corneal sensation with increasing severity of neuropathy assessed using NDS in the diabetic patients (r=0.414, P=0.000). Corneal nerve fibre density (P<0.001), branch density (P<0.001) and length (P<0.001) were significantly decreased whilst tortuosity (P<0.01) was increased in diabetic patients with increasing severity of diabetic neuropathy. Conclusion Utilising in vivo corneal confocal microscopy we have demonstrated increased LCs in diabetic patients particularly in the earlier phases of corneal nerve damage suggestive of an immune mediated contribution to corneal nerve damage in diabetes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Perhaps more than any other sub-discipline in optometry and vision science, the academic field of cornea and contact lenses is populated by an assortment of extroverted and flamboyant characters who constantly travel the world, entertaining clinicians with dazzling audiovisual presentations, informing them about the latest advances in the field and generally promoting their own scientific agendas. The antithesis of this is Leo Carney (Figure 1), a highly accomplished researcher, teacher, mentor and administrator, who has quietly and with great dignity carved out an impressive career in academic optometry. Indeed, Leo Carney is optometry's quintessential ‘quiet achiever’

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose. The objective of this study was to explore the discriminative capacity of non-contact corneal esthesiometry (NCCE) when compared with the neuropathy disability score (NDS) score—a validated, standard method of diagnosing clinically significant diabetic neuropathy. Methods. Eighty-one participants with type 2 diabetes, no history of ocular disease, trauma, or surgery and no history of systemic disease that may affect the cornea were enrolled. Participants were ineligible if there was history of neuropathy due to non-diabetic cause or current diabetic foot ulcer or infection. Corneal sensitivity threshold was measured on the eye of dominant hand side at a distance of 10 mm from the center of the cornea using a stimulus duration of 0.9 s. The NDS was measured producing a score ranging from 0 to 10. To determine the optimal cutoff point of corneal sensitivity that identified the presence of neuropathy (diagnosed by NDS), the Youden index and “closest-to-(0,1)” criteria were used. Results. The receiver-operator characteristic curve for NCCE for the presence of neuropathy (NDS ≥3) had an area under the curve of 0.73 (p = 0.001) and, for the presence of moderate neuropathy (NDS ≥6), area of 0.71 (p = 0.003). By using the Youden index, for an NDS ≥3, the sensitivity of NCCE was 70% and specificity was 75%, and a corneal sensitivity threshold of 0.66 mbar or higher indicated the presence of neuropathy. When NDS ≥6 (indicating risk of foot ulceration) was applied, the sensitivity was 52% with a specificity of 85%. Conclusions. NCCE is a sensitive test for the diagnosis of minimal and more advanced diabetic neuropathy and may serve as a useful surrogate marker for diabetic and perhaps other neuropathies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The tear film plays an important role preserving the health of the ocular surface and maintaining the optimal refractive power of the cornea. Moreover dry eye syndrome is one of the most commonly reported eye health problems. This syndrome is caused by abnormalities in the properties of the tear film. Current clinical tools to assess the tear film properties have shown certain limitations. The traditional invasive methods for the assessment of tear film quality, which are used by most clinicians, have been criticized for the lack of reliability and/or repeatability. A range of non-invasive methods of tear assessment have been investigated, but also present limitations. Hence no “gold standard” test is currently available to assess the tear film integrity. Therefore, improving techniques for the assessment of the tear film quality is of clinical significance and the main motivation for the work described in this thesis. In this study the tear film surface quality (TFSQ) changes were investigated by means of high-speed videokeratoscopy (HSV). In this technique, a set of concentric rings formed in an illuminated cone or a bowl is projected on the anterior cornea and their reflection from the ocular surface imaged on a charge-coupled device (CCD). The reflection of the light is produced in the outer most layer of the cornea, the tear film. Hence, when the tear film is smooth the reflected image presents a well structure pattern. In contrast, when the tear film surface presents irregularities, the pattern also becomes irregular due to the light scatter and deviation of the reflected light. The videokeratoscope provides an estimate of the corneal topography associated with each Placido disk image. Topographical estimates, which have been used in the past to quantify tear film changes, may not always be suitable for the evaluation of all the dynamic phases of the tear film. However the Placido disk image itself, which contains the reflected pattern, may be more appropriate to assess the tear film dynamics. A set of novel routines have been purposely developed to quantify the changes of the reflected pattern and to extract a time series estimate of the TFSQ from the video recording. The routine extracts from each frame of the video recording a maximized area of analysis. In this area a metric of the TFSQ is calculated. Initially two metrics based on the Gabor filter and Gaussian gradient-based techniques, were used to quantify the consistency of the pattern’s local orientation as a metric of TFSQ. These metrics have helped to demonstrate the applicability of HSV to assess the tear film, and the influence of contact lens wear on TFSQ. The results suggest that the dynamic-area analysis method of HSV was able to distinguish and quantify the subtle, but systematic degradation of tear film surface quality in the inter-blink interval in contact lens wear. It was also able to clearly show a difference between bare eye and contact lens wearing conditions. Thus, the HSV method appears to be a useful technique for quantitatively investigating the effects of contact lens wear on the TFSQ. Subsequently a larger clinical study was conducted to perform a comparison between HSV and two other non-invasive techniques, lateral shearing interferometry (LSI) and dynamic wavefront sensing (DWS). Of these non-invasive techniques, the HSV appeared to be the most precise method for measuring TFSQ, by virtue of its lower coefficient of variation. While the LSI appears to be the most sensitive method for analyzing the tear build-up time (TBUT). The capability of each of the non-invasive methods to discriminate dry eye from normal subjects was also investigated. The receiver operating characteristic (ROC) curves were calculated to assess the ability of each method to predict dry eye syndrome. The LSI technique gave the best results under both natural blinking conditions and in suppressed blinking conditions, which was closely followed by HSV. The DWS did not perform as well as LSI or HSV. The main limitation of the HSV technique, which was identified during the former clinical study, was the lack of the sensitivity to quantify the build-up/formation phase of the tear film cycle. For that reason an extra metric based on image transformation and block processing was proposed. In this metric, the area of analysis was transformed from Cartesian to Polar coordinates, converting the concentric circles pattern into a quasi-straight lines image in which a block statistics value was extracted. This metric has shown better sensitivity under low pattern disturbance as well as has improved the performance of the ROC curves. Additionally a theoretical study, based on ray-tracing techniques and topographical models of the tear film, was proposed to fully comprehend the HSV measurement and the instrument’s potential limitations. Of special interested was the assessment of the instrument’s sensitivity under subtle topographic changes. The theoretical simulations have helped to provide some understanding on the tear film dynamics, for instance the model extracted for the build-up phase has helped to provide some insight into the dynamics during this initial phase. Finally some aspects of the mathematical modeling of TFSQ time series have been reported in this thesis. Over the years, different functions have been used to model the time series as well as to extract the key clinical parameters (i.e., timing). Unfortunately those techniques to model the tear film time series do not simultaneously consider the underlying physiological mechanism and the parameter extraction methods. A set of guidelines are proposed to meet both criteria. Special attention was given to a commonly used fit, the polynomial function, and considerations to select the appropriate model order to ensure the true derivative of the signal is accurately represented. The work described in this thesis has shown the potential of using high-speed videokeratoscopy to assess tear film surface quality. A set of novel image and signal processing techniques have been proposed to quantify different aspects of the tear film assessment, analysis and modeling. The dynamic-area HSV has shown good performance in a broad range of conditions (i.e., contact lens, normal and dry eye subjects). As a result, this technique could be a useful clinical tool to assess tear film surface quality in the future.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a novel method and instrument for in vivo imaging and measurement of the human corneal dynamics during an air puff. The instrument is based on high-speed swept source optical coherence tomography (ssOCT) combined with a custom adapted air puff chamber from a non-contact tonometer, which uses an air stream to deform the cornea in a non-invasive manner. During the short period of time that the deformation takes place, the ssOCT acquires multiple A-scans in time (M-scan) at the center of the air puff, allowing observation of the dynamics of the anterior and posterior corneal surfaces as well as the anterior lens surface. The dynamics of the measurement are driven by the biomechanical properties of the human eye as well as its intraocular pressure. Thus, the analysis of the M-scan may provide useful information about the biomechanical behavior of the anterior segment during the applanation caused by the air puff. An initial set of controlled clinical experiments are shown to comprehend the performance of the instrument and its potential applicability to further understand the eye biomechanics and intraocular pressure measurements. Limitations and possibilities of the new apparatus are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A healthy human would be expected to show periodic blinks, making a brief closure of the eyelids. Most blinks are spontaneous, occurring regularly with no external stimulus. However a reflex blink can occur in response to external stimuli such as a bright light, a sudden loud noise, or an object approaching toward the eyes. A voluntary or forced blink is another type of blink in which the person deliberately closes the eyes and the lower eyelid raises to meet the upper eyelid. A complete blink, in which the upper eyelid touches the lower eyelid, contributes to the health of ocular surface by providing a fresh layer of tears as well as maintaining optical integrity by providing a smooth tear film over the cornea. The rate of blinking and its completeness vary depending on the task undertaken during blink assessment, the direction of gaze, the emotional state of the subjects and the method under which the blink was measured. It is also well known that wearing contact lenses (both rigid and soft lenses) can induce significant changes in blink rate and completeness. It is been established that efficient blinking plays an important role in ocular surface health during contact lens wear and for improving contact lens performance and comfort. Inefficient blinking during contact lens wear may be related to a low blink rate or incomplete blinking and can often be a reason for dry eye symptoms or ocular surface staining. It has previously been shown that upward gaze can affect blink rate, causing it to become faster. In the first experiment, it was decided to expand on previous studies in this area by examining the effect of various gaze directions (i.e. upward gaze, primary gaze, downward gaze and lateral gaze) as well as head angle (recumbent position) on normal subjects’ blink rate and completeness through the use of filming with a high-speed camera. The results of this experiment showed that as the open palpebral aperture (and exposed ocular surface area) increased from downward gaze to upward gaze, the number of blinks significantly increased (p<0.04). Also, the size of closed palpebral aperture significantly increased from downward gaze to upward gaze (p<0.005). A weak positive correlation (R² = 0.18) between the blink rate and ocular surface area was found in this study. Also, it was found that the subjects showed 81% complete blinks, 19% incomplete blinks and 2% of twitch blinks in primary gaze, consistent with previous studies. The difference in the percentage of incomplete blinks between upward gaze and downward gaze was significant (p<0.004), showing more incomplete blinks in upward gaze. The findings of this experiment suggest that while blink rate becomes slower in downward gaze, the completeness of blinking is typically better, thereby potentially reducing the risk of tear instability. On the other hand, in upward gaze while the completeness of blinking becomes worse, this is potentially offset by increased blink frequency. In addition, blink rate and completeness were not affected by lateral gaze or head angle, possibly because these conditions have similar size of the open palpebral aperture compared with primary gaze. In the second experiment, an investigation into the changes in blink rate and completeness was carried out in primary gaze and downward gaze with soft and rigid contact lenses in unadapted wearers. Not surprisingly, rigid lens wear caused a significant increase in the blink rate in both primary (p<0.001) and downward gaze (p<0.02). After fitting rigid contact lenses, the closed palpebral aperture (blink completeness) did not show any changes but the open palpebral aperture showed a significant narrowing (p<0.04). This might occur from the subjects’ attempt to avoid interaction between the upper eyelid and the edge of the lens to minimize discomfort. After applying topical anaesthetic eye drops in the eye fitted with rigid lenses, the increased blink rate dropped to values similar to that before lens insertion and the open palpebral aperture returned to baseline values, suggesting that corneal and/or lid margin sensitivity was mediating the increased blink rate and narrowed palpebral aperture. We also investigated the changes in the blink rate and completeness with soft contact lenses including a soft sphere, double slab-off toric design and periballast toric design. Soft contact lenses did not cause any significant changes in the blink rate, closed palpebral aperture, open palpebral aperture and the percentage of incomplete blinks in either primary gaze or downward gaze. After applying anaesthetic eye drops, the blink rate reduced in both primary gaze and downward gaze, however this difference was not statistically significant. The size of the closed palpebral aperture and open palpebral aperture did not show any significant changes after applying anaesthetic eye drops. However it should be noted that the effects of rigid and soft contact lenses that we observed in these studies were only the immediate reaction to contact lenses and in the longer term, it is likely that these responses will vary as the eye adapts to the presence of the lenses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Diabetic neuropathy is a significant clinical problem that currently has no effective therapy, and in advanced cases, leads to foot ulceration and lower limb amputation. The accurate detection, characterization and quantification of this condition are important in order to define at-risk patients, anticipate deterioration, monitor progression, and assess new therapies This review evaluates novel corneal methods of assessing diabetic neuropathy. Two new non-invasive corneal markers have emerged, and in cross-sectional studies have demonstrated their ability to stratify the severity of this disease. Corneal confocal microscopy allows quantification of corneal nerve parameters and non-contact corneal esthesiometry, the functional correlate of corneal structure, assesses the sensitivity of the cornea. Both these techniques are quick to perform, produce little or no discomfort for the patient, and are suitable for clinical settings. Each has advantages and disadvantages over traditional techniques for assessing diabetic neuropathy. Application of these new corneal markers for longitudinal evaluation of diabetic neuropathy has the potential to reduce dependence on more invasive, costly, and time-consuming assessments, such as skin biopsy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Membranes prepared from a protein, fibroin, isolated from domesticated silkworm (Bombyx mori) silk, support the cultivation of human limbal epithelial (HLE) cells and thus display significant potential as biomaterials for ocular surface reconstruction. We presently extend this promising avenue of research by directly comparing the attachment, morphology and phenotype of primary HLE cell cultures grown on fibroin to that observed on donor amniotic membrane (AM), the current clinical standard substrate for HLE transplantation. Fibroin membranes measuring 6.3 ± 0.5 μm (mean ± sd) in thickness and permeable to FITC dextran of a molecular weight up to 70 kDa, were used. Attachment of HLE cells to fibroin was similar to that supported by tissue culture plastic but approximately 6-fold less than that observed on AM. Nevertheless, epithelia constructed from HLE on fibroin maintained evidence of corneal phenotype (K3/K12 expression) and displayed a comparable number and distribution of ΔNp63+ progenitor cells to that seen in cultures grown on AM. These results support the suitability of membranes constructed from Bombyx mori silk fibroin as substrata for HLE cultivation and encourage progression to studies of efficacy in preclinical models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Membranes prepared from Bombyx mori silk fibroin have shown potential as a substrate for human limbal epithelial (L-EC) and stromal cell cultivation. Here we present fibroin as a dual-layer construct containing both an epithelium and underlying stroma for corneolimbal reconstruction. We have compared the growth and phenotype of L-EC on non-porous versus porous fibroin membranes. Furthermore, we have compared the growth of limbal mesenchymal stromal cells (L-MSC) in either serum-supplemented medium or the MesenCult-XF® culture system within fibroin fibrous mats. The co-culture of L-EC and L-MSC in fibroin dual-layer constructs was also examined. L-EC on porous membranes displayed a squamous monolayer; in contrast, L-EC on non-porous fibroin appeared cuboidal and stratified. Both constructs maintained evidence of corneal phenotype (cytokeratin 3/12) and distribution of ΔNp63+ progenitor cells. L-MSC cultivated within fibroin fibrous mats in serum-supplemented medium contained less than 64% of cells expressing the characteristic MSC phenotype of CD73+CD90+CD105+ after two weeks, compared with over 81% in MesenCult-XF® medium. Dual-layer fibroin scaffolds consisting of L-EC and L-MSC maintained a similar phenotype as on the separate layers. These results support the feasibility of a 3D engineered limbus constructed from B. mori silk fibroin, and warrant further studies into the potential benefits it offers to corneolimbal tissue regeneration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: To determine likely errors in estimating retinal shape using partial coherence interferometric instruments when no allowance is made for optical distortion. Method: Errors were estimated using Gullstrand’s No. 1 schematic eye and variants which included a 10 D axial myopic eye, an emmetropic eye with a gradient-index lens, and a 10.9 D accommodating eye with a gradient-index lens. Performance was simulated for two commercial instruments, the IOLMaster (Carl Zeiss Meditec) and the Lenstar LS 900 (Haag-Streit AG). The incident beam was directed towards either the centre of curvature of the anterior cornea (corneal-direction method) or the centre of the entrance pupil (pupil-direction method). Simple trigonometry was used with the corneal intercept and the incident beam angle to estimate retinal contour. Conics were fitted to the estimated contours. Results: The pupil-direction method gave estimates of retinal contour that were much too flat. The cornea-direction method gave similar results for IOLMaster and Lenstar approaches. The steepness of the retinal contour was slightly overestimated, the exact effects varying with the refractive error, gradient index and accommodation. Conclusion: These theoretical results suggest that, for field angles ≤30º, partial coherence interferometric instruments are of use in estimating retinal shape by the corneal-direction method with the assumptions of a regular retinal shape and no optical distortion. It may be possible to improve on these estimates out to larger field angles by using optical modeling to correct for distortion.