989 resultados para carrier protein


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The emergence of strains of Plasmodium falciparum resistant to the commonly used antimalarials warrants the development of new antimalarial agents. The discovery of type II fatty acid synthase (FAS) in Plasmodium distinct from the FAS in its human host (type I FAS) opened up new avenues for the development of novel antimalarials. The process of fatty acid synthesis takes place by iterative elongation of butyryl-acyl carrier protein (butyryl-ACP) by two carbon units, with the successive action of four enzymes constituting the elongation module of FAS until the desired acyl length is obtained. The study of the fatty acid synthesis machinery of the parasite inside the red blood cell culture has always been a challenging task. Here, we report the in vitro reconstitution of the elongation module of the FAS of malaria parasite involving all four enzymes, FabB/F (β-ketoacyl-ACP synthase), FabG (β-ketoacyl-ACP reductase), FabZ (β-ketoacyl-ACP dehydratase), and FabI (enoyl-ACP reductase), and its analysis by matrix-assisted laser desorption-time of flight mass spectrometry (MALDI-TOF MS). That this in vitro systems approach completely mimics the in vivo machinery is confirmed by the distribution of acyl products. Using known inhibitors of the enzymes of the elongation module, cerulenin, triclosan, NAS-21/91, and (–)-catechin gallate, we demonstrate that accumulation of intermediates resulting from the inhibition of any of the enzymes can be unambiguously followed by MALDI-TOF MS. Thus, this work not only offers a powerful tool for easier and faster throughput screening of inhibitors but also allows for the study of the biochemical properties of the FAS pathway of the malaria parasite.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The emergence of strains of Plasmodium falciparum resistant to the commonly used antimalarials warrants the development of new antimalarial agents. The discovery of type II fatty acid synthase (FAS) in Plasmodium distinct from the FAS in its human host (type I FAS) opened up new avenues for the development of novel antimalarials. The process of fatty acid synthesis takes place by iterative elongation of butyryl-acyl carrier protein (butyryl-ACP) by two carbon units, with the successive action of four enzymes constituting the elongation module of FAS until the desired acyl length is obtained. The study of the fatty acid synthesis machinery of the parasite inside the red blood cell culture has always been a challenging task. Here, we report the in vitro reconstitution of the elongation module of the FAS of malaria parasite involving all four enzymes, FabB/F (β-ketoacyl-ACP synthase), FabG (β-ketoacyl-ACP reductase), FabZ (β-ketoacyl-ACP dehydratase), and FabI (enoyl-ACP reductase), and its analysis by matrix-assisted laser desorption-time of flight mass spectrometry (MALDI-TOF MS). That this in vitro systems approach completely mimics the in vivo machinery is confirmed by the distribution of acyl products. Using known inhibitors of the enzymes of the elongation module, cerulenin, triclosan, NAS-21/91, and (–)-catechin gallate, we demonstrate that accumulation of intermediates resulting from the inhibition of any of the enzymes can be unambiguously followed by MALDI-TOF MS. Thus, this work not only offers a powerful tool for easier and faster throughput screening of inhibitors but also allows for the study of the biochemical properties of the FAS pathway of the malaria parasite.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The crystal structure of beta-hydroxyacyl acyl carrier protein dehydratase of Plasmodium falciparum (PfFabZ) has been determined at a resolution of 2.4 angstrom. PfFabZ has been found to exist as a homodimer (d-PfFabZ) in the crystals of the present study in contrast to the reported hexameric form (h-PfFabZ) which is a trimer of dimers crystallized in a different condition. The catalytic sites of this enzyme are located in deep narrow tunnel-shaped pockets formed at the dimer interface. A histidine residue from one subunit of the dimer and a glutamate residue from the other subunit lining the tunnel form the catalytic dyad in the reported crystal structures. While the position of glutamate remains unaltered in the crystal structure of d-PffabZ compared to that in b-PfFabZ, the histidine residue takes up an entirely different conformation and moves away from the tunnel leading to a His-Phe cis-trans peptide flip at the histidine residue. In addition, a loop in the vicinity has been observed to undergo a similar flip at a Tyr-Pro peptide bond. These alterations not only prevent the formation of a hexamer but also distort the active site geometry resulting in a dimeric form of FabZ that is incapable of substrate binding. The dimeric state and an altered catalytic site architecture make d-PfFabZ distinctly different from the FabZ structures described so far. Dynamic light scattering and size exclusion chromatographic studies clearly indicate a pH-related switching of the dimers to active hexamers. (c) 2006 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserv.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thiolases are important in fatty-acid degradation and biosynthetic pathways. Analysis of the genomic sequence of Mycobacterium smegmatis suggests the presence of several putative thiolase genes. One of these genes appears to code for an SCP-x protein. Human SCP-x consists of an N-terminal domain (referred to as SCP2 thiolase) and a C-terminal domain (referred as sterol carrier protein 2). Here, the cloning, expression, purification and crystallization of this putative SCP-x protein from M. smegmatis are reported. The crystals diffracted X-rays to 2.5 angstrom resolution and belonged to the triclinic space group P1. Calculation of rotation functions using X-ray diffraction data suggests that the protein is likely to possess a hexameric oligomerization with 32 symmetry which has not been observed in the other six known classes of this enzyme.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Benzothiophene derivatives like benzothiophene sulphonamides, biphenyls, or carboxyls have been synthesized and have found wide pharmacological usage. Here we report, bromo-benzothiophene carboxamide derivatives as potent, slow tight binding inhibitors of Plasmodium enoyl-acyl carrier protein (ACP) reductase (PfENR). 3-Bromo-N-(4-fluorobenzyl)-benzo[b]thiophene-2-carboxamide (compound 6) is the most potent inhibitor with an IC(50) of 115 nM for purified PfENR. The inhibition constant (K(i)) of compound 6 was 18 nM with respect to the cofactor and 91 nM with respect to crotonoyl-CoA. These inhibitors showed competitive kinetics with cofactor and uncompetitive kinetics with the substrate. Thus, these compounds hold promise for the development of potent antimalarials. (C) 2011 IUBMB IUBMB Life, 63(12): 1101-1110, 2011

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thiolases are essential CoA-dependent enzymes in lipid metabolism. In the present study we report the crystal structures of trypanosomal and leishmanial SCP2 (sterol carrier protein, type-2)-thiolases. Trypanosomatidae cause various widespread devastating (sub)-tropical diseases, for which adequate treatment is lacking. The structures reveal the unique geometry of the active site of this poorly characterized subfamily of thiolases. The key catalytic residues of the classical thiolases are two cysteine residues, functioning as a nucleophile and an acid/base respectively. The latter cysteine residue is part of a CxG motif. Interestingly, this cysteine residue is not conserved in SCP2-thiolases. The structural comparisons now show that in SCP2-thiolases the catalytic acid/base is provided by the cysteine residue of the HDCF motif, which is unique for this thiolase subfamily. This HDCF cysteine residue is spatially equivalent to the CxG cysteine residue of classical thiolases. The HDCF cysteine residue is activated for acid/base catalysis by two main chain NH-atoms, instead of two water molecules, as present in the CxG active site. The structural results have been complemented with enzyme activity data, confirming the importance of the HDCF cysteine residue for catalysis. The data obtained suggest that these trypanosomatid SCP2-thiolases are biosynthetic thiolases. These findings provide promise for drug discovery as biosynthetic thiolases catalyse the first step of the sterol biosynthesis pathway that is essential in several of these parasites.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

New anti-tubercular agents, imidazo1,2-a]pyridine-2-carboxamide derivatives (5a-q) have been designed and synthesized. The structural considerations of the designed molecules were further supported by the docking study with a long-chain enoyl-acyl carrier protein reductase (InhA). The chemical structures of the new compounds were characterized by IR, H-1 NMR, C-13 NMR, HRMS and elemental analysis. In addition, single crystal X-ray diffraction has also been recorded for compound 5f. Compounds were evaluated in vitro against Mycobacterium tuberculosis H37Rv, and cytotoxicity against HEK-293T cell line. Amongst the tested compounds 5j, 5l and 5q were emerged as good anti-tubercular agents with low cytotoxicity. The structure-anti TB activity relationship of these derivatives was explained by molecular docking. (C) 2014 Elsevier Masson SAS. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A new, phenoxo-bridged Cu-II dinuclear complex Cu-2(L)(2)(DMF)(2)] (1) has been obtained by employing the coumarin-assisted tridentate precursor, H2L, benzoic acid(7-hydroxy-4-methyl-2-oxo-2H-chromen-8-ylmethylene)-hydrazide]. Complex 1 has been systematically characterized by FTIR, UV-Vis, fluorescence and PR spectrometry. The single crystal X-ray diffraction analysis of 1 shows that the geometry around each copper ion is square pyramidal, comprising two enolato oxygen atoms belonging to different ligands (which assemble the dimer bridging the two metal centers), one imine-N and one phenolic-O atoms of the Schiff base and one oxygen atom from the DMF molecule. The temperature dependent magnetic interpretation agrees with the existence of weak ferromagnetic interactions between the bridging dinuclear Cu(II) ions. Both the ligand and complex 1 exhibit anti-mycobacterial activity and considerable efficacy towards M. tuberculosis H37Rv ATCC 27294 and M. tuberculosis H37Ra ATCC 25177 strains. The cytotoxicity study on human adenocarcinoma cell lines (MCF7) suggests that the ligand and complex 1 have potential anticancer properties. Molecular docking of H2L with the enoyl acyl carrier protein reductase of M. tuberculosis H37R(v) (PDB ID: 4U0K) is examined and the best docked pose of H2L shows one hydrogen bond with Thr196 (1.99 angstrom).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

6 p. [+ 7 p. Supplementary Information]

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The insecticide dichlorodiphenyltrichloroethane (DDT) is persistent in the environment, and continues to cause health problems. Tetrahymena has potential as a model organism for assaying low levels of DDT and for analysing the mechanisms of its toxicity. We constructed the suppression subtractive hybridization library of T thermophila exposed to DDT, and screened out 90 Expressed Sequence Tags whose expressions were significantly up- or downregulated with DDT treatment. From this, a series of important genes related to the DDT metabolism and detoxification were discovered, such as P450 gene, glutathione S-transferase gene and sterol carrier protein 2 gene. Furthermore, their expressions under different concentrations of DDT treatment were detected by real-time fluorescent quantitative PCR. The results show that Tetrahymena is a relevant and useful model organism for detecting DDT in the environment and for discovering biomarkers that can be used to develop specific bio-reporters at the molecular and genomic levels.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Polyclonal antibodies were produced to detect the coccidiostat nicarbazin. Due to structural constraints of the active component of nicarbazin, dinitrocarbanilide (DNC), three different compounds that shared a common substructure with DNC were used as antigen mimics. The compounds (N-suceinyl-L-alanyl-L-alanyl-L-alanine 4-nitroanilide (SAN), L-glutamic acid gamma-(p-nitroanilide) (GAN) and p-nitrosuccinanilic acid (NSA)) were conjugated to a carrier protein and used in the immunisation of rabbits. Five different polyclonal sera were produced and consequently characterised. The antibodies exhibited an IC50 range of 2.3-7.6 ng/ml using a competitive ELISA procedure, Serum from one rabbit, R555, exhibited an IC50 of 2.9 ng/ml for DNC and cross-reactivity studies showed that this serum was specific for DNC and did not cross-react with other coccidiostats such as halofuginone, toltrazuril or ronidazole. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The production of an antibody to detect toltrazuril or its metabolite ponazuril is complicated due to structural constraints of conjugating these coccidiostats to a carrier protein. Therefore a search was carried out for a compound that shared a common substructure to use as an antigen mimic. The chosen compound, trifluoraminoether, was conjugated to two carrier proteins (HSA and BTG) and used in the immunisation of six rabbits. Two immunogen doses (1 mg and 0.1 mg) were also used. All six rabbits produced an immunological response to the hapten regardless of the carrier protein or immunogen dose used. The most sensitive polyclonal antibody produced, designated R609, was subsequently characterised. This antiserum exhibited an IC50 of 18 ng ml-1 using a competitive ELISA format. Cross reactivity studies show that this serum is specific for toltrazuril and its metabolites (toltrazuril sulfoxide and toltrazuril sulfone) but does not cross-react with other coccidiostats such as halofuginone, nitroimidazoles or nicarbazin. This is the first reported production of an antibody capable of specifically binding toltrazuril and ponazuril.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The spontaneous formation of the neurotoxic carcinogen acrylamide in a wide range of cooked foods has recently been discovered. These foods include bread and other bakery products, crisps, chips, breakfast cereals, and coffee. To date, the diminutive size of acrylamide (71.08Da) has prevented the development of screening immunoassays for this chemical. In this study, a polyclonal antibody capable of binding the carcinogen was produced by the synthesis of an immunogen comprising acrylamide derivatised with 3-mercaptobenzoic acid (3-MBA), and its conjugation to the carrier protein bovine thyroglobulin. Antiserum from the immunised rabbit was harvested and fully characterised. it displayed no binding affinity for acrylamide or 3-MBA but had a high affinity for 3-MBA-derivitised acrylamide. The antisera produced was utilised in the development of an ELISA based detection system for acrylamide. Spiked water samples were assayed for acrylamide content using a previously published extraction method validated for coffee, crispbread, potato, milk chocolate and potato crisp matrices. Extracted acrylamide was then subjected to a rapid 1-h derivatisation with 3-MBA, pre-analysis. The ELISA was shown to have a high specificity for acrylamide, with a limit of detection in water samples of 65.7 mu g kg(-1), i.e. potentially suitable for acrylamide detection in a wide range of food commodities. Future development of this assay will increase sensitivity further. This is the first report of an immunoassay capable of detecting the carcinogen, as its small size has necessitated current analytical detection via expensive, slower, physico-chemical techniques such as Gas or Liquid Chromatography coupled to Mass Spectrometry. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The means to detect the irradiation of food has been investigated for many years. In recent times radiolytic products, termed 2-alkylcyclobutanones (2-CBs), have been identified as excellent markers of irradiation in lipid-containing foods. An ELISA test was developed, which was capable of detecting a number of these compounds in irradiated chicken meat. A polyclonal antiserum was raised to a 2-CB containing a terminal carboxyl group conjugated to a carrier protein. This antiserum was highly specific for cyclobutanones containing C-10 and C-12 side chains. During assay validation the limit of detection of the assay was calculated to be 0.064 pg of 2-CB per gram of fat, within- and between-assay variations ranged from 6.7 to 18%. During experimental studies, chicken meat irradiated at doses ranging from 2.5 to 10 kGy were assayed and correctly identified as being treated. Quantitative comparisons between the ELISA and CC-MS revealed a good correlation (r(2) = 0.913) between the two methodologies in concentrations of 2-CB detected in irradiated samples.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work aimed to contribute to drug discovery and development (DDD) for tauopathies, while expanding our knowledge on this group of neurodegenerative disorders, including Alzheimer’s disease (AD). Using yeast, a recognized model for neurodegeneration studies, useful models were produced for the study of tau interaction with beta-amyloid (Aβ), both AD hallmark proteins. The characterization of these models suggests that these proteins co-localize and that Aβ1-42, which is toxic to yeast, is involved in tau40 phosphorylation (Ser396/404) via the GSK-3β yeast orthologue, whereas tau seems to facilitate Aβ1-42 oligomerization. The mapping of tau’s interactome in yeast, achieved with a tau toxicity enhancer screen using the yeast deletion collection, provided a novel framework, composed of 31 genes, to identify new mechanisms associated with tau pathology, as well as to identify new drug targets or biomarkers. This genomic screen also allowed to select the yeast strain mir1Δ-tau40 for development of a new GPSD2TM drug discovery screening system. A library of unique 138 marine bacteria extracts, obtained from the Mid-Atlantic Ridge hydrothermal vents, was screened with mir1Δ-tau40. Three extracts were identified as suppressors of tau toxicity and constitute good starting points for DDD programs. mir1Δ strain was sensitive to tau toxicity, relating tau pathology with mitochondrial function. SLC25A3, the human homologue of MIR1, codes for the mitochondrial phosphate carrier protein (PiC). Resorting to iRNA, SLC25A3 expression was silenced in human neuroglioma cells, as a first step towards the engineering of a neural model for replicating the results obtained in yeast. This model is essential to understand the mechanisms of tau toxicity at the mitochondrial level and to validate PiC as a relevant drug target. The set of DDD tools here presented will foster the development of innovative and efficacious therapies, urgently needed to cope with tau-related disorders of high human and social-economic impact.