987 resultados para Viruses


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interluekin-23 (IL-23) is a pro-inflammatory cytokine critical to the regulation of innate and adaptive immune responses. The main role for this cytokine is in the proliferation and differentiation of the IL-17 producing CD4 T helper cell, Th17. Virus infection deregulates IL-23 expression and function, but little is known about the mechanism behind this phenomena. Here, I demonstrate a reduction of Toll like receptor (TLR) ligand-induced IL-23 expression in lymphocytic choriomeningitis virus (LCMV)-infected bone marrow-derived dendritic cells (BMDCs), indicating that a function of these cells is disrupted during virus infection. I propose a mechanism of TLR ligand-induced IL-23 expression inhibition upon LCMV infection via the deactivation of p38, AP-1, and NF-κB. Further analysis revealed a direct relationship between LCMV infection with the IL-10 and SOCS3 expression. To understand IL-23 function, I characterized IL-23-induced JAK/STAT signalling pathway and IL-23 receptor expression on human CD4 T cells. My results demonstrate that IL-23 induces activation of p-JAK2, p-Tyk2, p-STAT1, p-STAT3, and p-STAT4 in CD4 T cells. For the first time I show that IL-23 alone induces the expression of its own receptor components, IL-12Rβ1 and IL-23Rα, in CD4 T cells. Blocking JAK2, STAT1, and STAT3 activation with specific inhibitors detrimentally effected expression of IL-23 receptor demonstrating that activation of JAK/STAT signalling is important for IL-23 receptor expression. I also addressed the effect of viral infection on IL-23 function and receptor expression in CD4 T cells using cells isolated from HIV positive individuals. These studies were based on earlier reports that the expression of IL-23 and the IL-23 receptor are impaired during HIV infection. I demonstrate that the phosphorylation of JAK2, STAT1, and STAT3 induced by IL-23, as well as IL-23 receptor expression are deregulated in CD4 T cells isolated from HIV positive individuals. This study has furthered the understanding of how the expression and function of IL-23 is regulated during viral infections.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Members of the morbillivirus genus, canine distemper (CDV), phocine distemper virus (PDV), and the cetacean viruses of dolphins and porpoises exhibit high levels of CNS infection in their natural hosts. CNS complications are rare for measles virus (MV) and are not associated with rinderpest virus (RPV) and peste des petits ruminants virus (PPRV) infection. However, it is possible that all morbilliviruses infect the CNS but in some hosts are rapidly cleared by the immune response. In this study, we assessed whether RPV and PPRV have the potential to be neurovirulent. We describe the outcome of infection, of selected mouse strains, with isolates of RPV, PPRV, PDV, porpoise morbillivirus (PMV), dolphin morbillivirus (DMV), and a wild-type strain of MV. In the case of RPV virus, strains with different passage histories have been examined. The results of experiments with these viruses were compared with those using neuroadapted and vaccine strains of MV, which acted as positive and negative controls respectively. Intracerebral inoculation with RPV (Saudi/81) and PPRV (Nigeria75/1) strains produced infection in Balb/C and Cd1, but not C57 suckling mice, whereas the CAM/RB rodent-adapted strain of MV infected all three strains of mice. Weanling mice were only infected by CAM/RB. Intranasal and intraperitoneal inoculation failed to produce infection with any virus strains. We have shown that, both RPV and PPRV, in common with other morbilliviruses are neurovirulent in a permissive system. Transient infection of the CNS of cattle and goats with RPV and PPRV, respectively, remains a possibility, which could provide relevant models for the initial stages of MV infection in humans.