985 resultados para Sequence Alignment


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The dibenzofuran (DF)-degrading bacterium, Janibacter terrae strain XJ-1, was isolated from sediment from East Lake in Wuhan, China. This strain grows aerobically on DF as the sole source of carbon and energy; it has a doubling time of 12 hours at 30 degrees C; and it almost completely degraded 100 mg/L-1 DF in 5 days, producing 2,2',3-trihydroxybiphenyl, salicylic acid, gentisic acid, and other metabolites. The dbdA (DF dioxygenase) gene cluster in the strain is almost identical to that on a large plasmid in Terrabacter sp. YK3. Unlike Janibacter sp. strain YY-1, XJ-1 accumulates gentisic acid rather than catechol as a final product of DF degradation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Spindlin has been suggested to play an important role during the transition from oocyte maturation to embryo development in mouse, but its homolog similar to the mouse Spindlin in molecular and expression characterization has not been identified up to now in other vertebrates. In this study, a full length of cDNA sequence is cloned and sequenced from the gibel carp (Carassius auratus gibelio). It contains 1240 nucleotides with an open reading frame of 771 nt encoding 257 amino acids. Based on its amino acid sequence alignment and comparison analysis with the known Spin family proteins, the newly cloned Spin is named Carassius auratus gibelio Spindlin (CagSpin). Its product could be detected from mature eggs to blastula embryos, but its content decreased from the two-cell stage, and could not be detected after the gastrula stage. It suggests that the CagSpin should be a maternal protein that is expressed during oocyte maturation, and plays a crucial role in early cleavage of embryogenesis. CagSpin is the first homolog similar to mouse spindlin identified in fish, and also in other vertebrates. GST pull-down assay reveals the first biochemical evidence for the association of CagSpin and p-tubulin, the microtubule component. Therefore, CagSpin may play important functions by interacting with beta-tubulin and other spindle proteins during oocyte maturation and egg fertilization. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A SMART cDNA plasmid library was constructed from protogyous greasy grouper (Epinephelus coioides) pituitary, and the full-length cDNAs of three gonadotropin (GTH) subunits common alpha, FSH beta and LH beta were cloned and sequenced from the library. The nucleotide sequences of common alpha, FSH beta and LH beta subunit cDNAs are 647, 594 and 574 bp in length, and encode for mature peptides of 94, 99 and 115 aa, respectively. High homology was observed by amino acid sequence alignment and identity comparison of the grouper mature peptides of common alpha, FSH beta and LH beta with that of other fishes. Phylogenetic tree analyses of the three GTH mature subunits revealed similar phylogeny relationships among the studied fish species. Three polyclonal antibodies were prepared from the in vitro expressed common alpha, FSH beta and LH beta mature proteins, respectively. Western blot analysis and immunofluoresence localization were performed on two typical stages of ovarian development stages in red-spotted grouper. Significant differences in protein expression levels of three gonadotropin subunits were revealed between the two ovarian development stages. In the individuals with resting ovary, common alpha was almost not detected in pituitaries, and FSH beta and LH beta expression levels were very low. While in the individuals with developing ovary, the expression of all three gonadotropin subunits reached to a high level. Immunofluoresence localization indicated that the grouper FSH beta cells mainly distributed in the middle area of PPD, while the LH beta cells distributed more widely, including in the area similar to the FSH beta cells and at the external periphery of pituitary near to the PI side. The common alpha might be expressed in both FSH beta and LH beta cells. Double immunofluoresence localization further demonstrated FSH beta and LH beta expression in distinct cells in the PPD area, although the FSH beta and LH beta cells were detected in the identical area of PPD. (c) 2005 Elsevier Ireland Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A rapid, sensitive and highly specific detection method for Aquareovirus based on reverse-transcription polymerase chain reaction (RT-PCR) was developed. Based on multiple sequence alignment of the cloned sequences of a local isolates, the Threadfin reovirus (TFV) and Guppy reovirus (GPV) with Grass carp reovirus (GCRV), a pair of degenerate primers was selected carefully and synthesized. Using this primer combination, only one specific product, approximately 450 bp in length was obtained when RT-PCR was carried out using the genomic double-stranded RNA (dsRNA) of TFV, GPV and GCRV. Similar results were also obtained when Chum salmon reovirus (CSRV) and Striped bass reovirus (SBRV) dsRNA were used as templates. No products were observed when nucleic acids other than the dsRNA of the aquareoviruses described above were used as RT-PCR templates. This technique could detect not only TFV but also GPV and GCRV in low titer virus-infected cell cultured cells. Furthermore, this method has also been shown to be able to diagnose GPV-infected guppy (Poecilia reticulata) that exhibit clinical symptoms as well as GPV-carrier guppy. Collectively, these results showed that the RT-PCR amplification method using specific degenerate primers described below is very useful for rapid and accurate detection of a variety of aquareovirus strains isolated from different host species and origin. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In protein sequence alignment, residue similarity is usually evaluated by substitution matrix, which scores all possible exchanges of one amino acid with another. Several matrices are widely used in sequence alignment, including PAM matrices derived from homologous sequence and BLOSUM matrices derived from aligned segments of BLOCKS. However, most matrices have not addressed the high-order residue-residue interactions that are vital to the bioproperties of protein.With consideration for the inherent correlation in residue triplet, we present a new scoring scheme for sequence alignment. Protein sequence is treated as overlapping and successive 3-residue segments. Two edge residues of a triplet are clustered into hydrophobic or polar categories, respectively. Protein sequence is then rewritten into triplet sequence with 2 · 20 · 2 = 80 alphabets. Using a traditional approach, we construct a new scoring scheme named TLESUMhp (TripLEt SUbstitution Matrices with hydropobic and polar information) for pairwise substitution of triplets, which characterizes the similarity of residue triplets. The applications of this matrix led to marked improvements in multiple sequence alignment and in searching structurally alike residue segments. The reason for the occurrence of the ‘‘twilight zone,’’ i.e., structure explosion of lowidentity sequences, is also discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Serine/threonine kinases (STKs) have been found in an increasing number of prokaryotes, showing important roles in signal transduction that supplement the well known role of two-component system. Cyanobacteria are photoautotrophic prokaryotes able to grow in a wide range of ecological environments, and their signal transduction systems are important in adaptation to the environment. Sequence information from several cyanobacterial genomes offers a unique opportunity to conduct a comprehensive comparative analysis of this kinase family. In this study, we extracted information regarding Ser/Thr kinases from 21 species of sequenced cyanobacteria and investigated their diversity, conservation, domain structure, and evolution. Results: 286 putative STK homologues were identified. STKs are absent in four Prochlorococcus strains and one marine Synechococcus strain and abundant in filamentous nitrogen-fixing cyanobacteria. Motifs and invariant amino acids typical in eukaryotic STKs were conserved well in these proteins, and six more cyanobacteria- or bacteria-specific conserved residues were found. These STK proteins were classified into three major families according to their domain structures. Fourteen types and a total of 131 additional domains were identified, some of which are reported to participate in the recognition of signals or substrates. Cyanobacterial STKs show rather complicated phylogenetic relationships that correspond poorly with phylogenies based on 16S rRNA and those based on additional domains. Conclusion: The number of STK genes in different cyanobacteria is the result of the genome size, ecophysiology, and physiological properties of the organism. Similar conserved motifs and amino acids indicate that cyanobacterial STKs make use of a similar catalytic mechanism as eukaryotic STKs. Gene gain-and-loss is significant during STK evolution, along with domain shuffling and insertion. This study has established an overall framework of sequence-structure-function interactions for the STK gene family, which may facilitate further studies of the role of STKs in various organisms.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Serine/threonine kinases (STKs) have been found in an increasing number of prokaryotes, showing important roles in signal transduction that supplement the well known role of two-component system. Cyanobacteria are photoautotrophic prokaryotes able to grow in a wide range of ecological environments, and their signal transduction systems are important in adaptation to the environment. Sequence information from several cyanobacterial genomes offers a unique opportunity to conduct a comprehensive comparative analysis of this kinase family. In this study, we extracted information regarding Ser/Thr kinases from 21 species of sequenced cyanobacteria and investigated their diversity, conservation, domain structure, and evolution. Results: 286 putative STK homologues were identified. STKs are absent in four Prochlorococcus strains and one marine Synechococcus strain and abundant in filamentous nitrogen-fixing cyanobacteria. Motifs and invariant amino acids typical in eukaryotic STKs were conserved well in these proteins, and six more cyanobacteria- or bacteria-specific conserved residues were found. These STK proteins were classified into three major families according to their domain structures. Fourteen types and a total of 131 additional domains were identified, some of which are reported to participate in the recognition of signals or substrates. Cyanobacterial STKs show rather complicated phylogenetic relationships that correspond poorly with phylogenies based on 16S rRNA and those based on additional domains. Conclusion: The number of STK genes in different cyanobacteria is the result of the genome size, ecophysiology, and physiological properties of the organism. Similar conserved motifs and amino acids indicate that cyanobacterial STKs make use of a similar catalytic mechanism as eukaryotic STKs. Gene gain-and-loss is significant during STK evolution, along with domain shuffling and insertion. This study has established an overall framework of sequence-structure-function interactions for the STK gene family, which may facilitate further studies of the role of STKs in various organisms.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cyanobacteria are an ancient group of gram-negative bacteria with strong genome size variation ranging from 1.6 to 9.1 Mb. Here, we first retrieved all the putative restriction-modification (RM) genes in the draft genome of Spirulina and then performed a range of comparative and bioinformatic analyses on RM genes from unicellular and filamentous cyanobacterial genomes. We have identified 6 gene clusters containing putative Type I RMs and 11 putative Type II RMs or the solitary methyltransferases (MTases). RT-PCR analysis reveals that 6 of 18 MTases are not expressed in Spirulina, whereas one hsdM gene, with a mutated cognate hsdS, was detected to be expressed. Our results indicate that the number of RM genes in filamentous cyanobacteria is significantly higher than in unicellular species, and this expansion of RM systems in filamentous cyanobacteria may be related to their wide range of ecological tolerance. Furthermore, a coevolutionary pattern is found between hsdM and hsdR, with a large number of site pairs positively or negatively correlated, indicating the functional importance of these pairing interactions between their tertiary structures. No evidence for positive selection is found for the majority of RMs, e. g., hsdM, hsdS, hsdR, and Type II restriction endonuclease gene families, while a group of MTases exhibit a remarkable signature of adaptive evolution. Sites and genes identified here to have been under positive selection would provide targets for further research on their structural and functional evaluations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Clip domain serine protease (cSP), characterized by conserved clip domains, is a new serine protease family identified mainly in arthropod, and plays important roles in development and immunity. In the present study, the full-length cDNA of a cSP (designated EscSP) was cloned from Chinese mitten crab Eriocheir sinensis by expressed sequence tags (ESTs) and PCR techniques. The 1380 bp EscSP cDNA contained a 1152 bp open reading frame (ORF) encoding a putative cSP of 383 amino acids, a 5'-untranslated region (UTR) of 54 bp, and a 3'-UTR of 174 bp. Multiple sequence alignment presented twelve conserved cysteine residues and a canonical catalytic triad (His(185), Asp(235) and Ser(332)) critical for the fundamental structure and function of EscSP. Two types of cSP domains, the clip domain and tryp_spc domain, were identified in the deduced amino acids sequence of EscSP. The conservation characteristics and similarities with previously known cSPs indicated that EscSP was a member of the large cSP family. The mRNA expression of EscSP in different tissues and the temporal expression in haemocytes challenged by Listonella anguillarum were measured by real-time RT-PCR. EscSP mRNA transcripts could be detected in all examined tissues, and were higher expressed in muscle than that in hepatopancreas. gill, gonad, haemocytes and heart. The EscSP mRNA expression in haemocytes was up-regulated after L anguillarum challenge and peaked at 2 h (4.96 fold, P < 0.05) and 12 h (9.90 fold, P < 0.05). Its expression pattern was similar to prophenoloxidase (EsproPO), one of the components of crab proPO system found in our previous report. These results implied that EscSP was involved in the processes of host-pathogen interaction probably as one of the proPO system members. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The psychrotrophic Antarctic alga, Chlorella vulgaris NJ-7, grows under an extreme environment of low temperature and high salinity. In an effort to better understand the correlation between fatty acid metabolism and acclimation to Antarctic environment, we analyzed its fatty acid compositions. An extremely high amount of Delta(12) unsaturated fatty acids was identified which prompted us to speculate about the involvement of Delta(12) fatty acid desaturase in the process of acclimation. A full-length cDNA sequence, designated CvFAD2, was isolated from C. vulgaris NJ-7 via reverse transcription polymerase chain reaction (RT-PCR) and RACE methods. Sequence alignment and phylogenetic analysis showed that the gene was homologous to known microsomal Delta(12)-FADs with the conserved histidine motifs. Heterologous expression in yeast was used to confirm the regioselectivity and the function of CvFAD2. Linoleic acid (18:2), normally not present in wild-type yeast cells, was detected in transformants of CvFAD2. The induction of CvFAD2 at an mRNA level under cold stress and high salinity is detected by real-time PCR. The results showed that both temperature and salinity motivated the upregulation of CvFAD2 expression. The accumulation of CvFAD2 increased 2.2-fold at 15A degrees C and 3.9-fold at 4A degrees C compared to the alga at 25A degrees C. Meanwhile a 1.7- and 8.5-fold increase at 3 and 6% NaCl was detected. These data suggest that CvFAD2 is the enzyme responsible for the Delta(12) fatty acids desaturation involved in the adaption to cold and high salinity for Antarctic C. vugaris NJ-7.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Myogenin is a bHLH transcription factor of the MyoD family. It plays a crucial role in myoblast differentiation and maturation. We report here the isolation of flounder myogenin gene and the characterization of its expression patterns. Sequence analysis indicated that flounder myogenin shared a similar structure and the conserved bHLH domain with other vertebrate myogenin genes. Flounder myogenin gene contains 3 exons and 2 introns. Sequence alignment and phylogenetic showed that flounder myogenin was more homologous with halibut (Hippoglossus hippoglossus) myogenin and striped bass (Morone saxatilis) myogenin. Whole-mount embryo in situ hybridization revealed that flounder myogenin was first detected in the medial region of somites that give rise to slow muscles, and expanded later to the lateral region of the somite that become fast muscles. The levels of myogenin transcripts dropped significantly in matured somites at the trunk region. Its expression could only be detected in the caudal somites, which was consistent with the timing of somite maturation. Transient expression analysis showed that the 546 bp flounder myogenin promoter was sufficient to direct muscle-specific GFP expression in zebrafish embryos. (c) 2007 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Serine proteinase homologues (SPHs), as one of prophenoloxiase-activating factors (PPAFs), play critical roles in innate immunity of crabs. Based on an EST from the eyestalk full length cDNA library, the complete cDNA (designated as PtSPH) and genomic DNA of SPH from the swimming crab Portunus trituberculatus were cloned in this study. The estimated molecular weight of mature PtSPH (354 amino acids) was 38.7 kDa and its isoelectric point was 5.08. Multiple sequence alignment revealed that PtSPH lacked a catalytic residue with a substitution of Ser in the active site triad to Gly. Phylogenetic analysis indicated PtSPH together with PPAFs of Callinectes sapidus (AAS60227), Eriocheir sinensis (ACU65942), Penaeus monodon (ABE03741, ACP19563) and Pacifastacus leniusculus (ACB41380), formed a distinct cluster which only included clip-SPHs. As the first analyzed genomic structure of PPAFs in crustaceans, two introns were found in the open reading frame region of this gene. The mRNA transcripts of PtSPH could be detected in all the examined tissues, and were higher expressed in the eyestalk than that in gill, hepatopancreas, haemocytes and muscle. Accompanied with the change in phenoloxidase (PO) activity and total haemocyte counts, the temporal expression of PtSPH gene in haemocytes after Vibrio alginolyticus challenge demonstrated a clear time-dependent expression pattern with two peaks within the experimental period of 32 h. These findings suggest that PtSPH is involved in the antibacterial defense mechanism of Portunus tritubercualtus crab. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Specification and differentiation of skeletal muscle cells are driven by the activity of genes encoding members of the myogenic regulatory factors (MRFs). In vertebrates, the MRF family includes MyoD, Myf5, myogenin, and MRF4. The MRFs are capable of converting a variety of nonmuscle cells into myoblasts and myotubes. To better understand their roles in fish muscle development, we isolated the MyoD gene from flounder (Paralichthys olivaceus) and analyzed its structure and patterns of expression. Sequence analysis showed that flounder MyoD shared a structure similar to that of vertebrate MRFs with three exons and two introns, and its protein contained a highly conserved basic helix-loop-helix domain (bHLH). Comparison of sequences revealed that flounder MyoD was highly conserved with other fish MyoD genes. Sequence alignment and phylogenetic analysis indicated that flounder MyoD, seabream (Sparus aurata) MyoD1, takifugu (Takifugu rubripes) MyoD, and tilapia (Oreochromis aureus) MyoD were more likely to be homologous genes. Flounder MyoD expression was first detected as two rows of presomitic cells in the segmental plate. From somitogenesis, MyoD transcripts were present in the adaxial cells that give rise to slow muscles and the lateral somitic cells that give rise to fast muscles. After 30 somites formed, MyoD expression decreased in the somites except the caudal somites, coincident with somite maturation. In the hatching stage, MyoD was expressed in other muscle cells and caudal somites. It was detected only in muscle in the growing fish.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Highly pathogenic avian influenza H5N1 virus has swept west across the globe and caused serious debates on the roles of migratory birds in virus circulation since the first large-scale outbreak in migratory birds of Lake Qinghai, 2005. In May 2006, another outbreak struck Lake Qinghai and six novel strains were isolated. To elucidate these QH06 viruses, the six isolates were subjected to whole-genome sequencing. Phylogenetic analyses show that QH06 viruses are derived from the lineages of Lake Qinghai, 2005. Five of the six novel isolates are adjacent to the strain A/Cygnus olor/Croatia/1/05, and the last one is related to the strain A/duck/Novosibirsk/ 02/05, an isolate of the flyway. Antigenic analyses suggest that QH06 and QH05 viruses are similar to each other. These findings implicate that QH06 viruses of Lake Qinghai may travel back via migratory birds, though not ruling out the possibility of local circulation of viruses of Lake Qinghai.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND:Recent advances in genome sequencing suggest a remarkable conservation in gene content of mammalian organisms. The similarity in gene repertoire present in different organisms has increased interest in studying regulatory mechanisms of gene expression aimed at elucidating the differences in phenotypes. In particular, a proximal promoter region contains a large number of regulatory elements that control the expression of its downstream gene. Although many studies have focused on identification of these elements, a broader picture on the complexity of transcriptional regulation of different biological processes has not been addressed in mammals. The regulatory complexity may strongly correlate with gene function, as different evolutionary forces must act on the regulatory systems under different biological conditions. We investigate this hypothesis by comparing the conservation of promoters upstream of genes classified in different functional categories.RESULTS:By conducting a rank correlation analysis between functional annotation and upstream sequence alignment scores obtained by human-mouse and human-dog comparison, we found a significantly greater conservation of the upstream sequence of genes involved in development, cell communication, neural functions and signaling processes than those involved in more basic processes shared with unicellular organisms such as metabolism and ribosomal function. This observation persists after controlling for G+C content. Considering conservation as a functional signature, we hypothesize a higher density of cis-regulatory elements upstream of genes participating in complex and adaptive processes.CONCLUSION:We identified a class of functions that are associated with either high or low promoter conservation in mammals. We detected a significant tendency that points to complex and adaptive processes were associated with higher promoter conservation, despite the fact that they have emerged relatively recently during evolution. We described and contrasted several hypotheses that provide a deeper insight into how transcriptional complexity might have been emerged during evolution.