992 resultados para Oxidation-kinetics


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study of photocatalytic oxidation of phenol over titanium dioxide films presents a method for the evaluation of true reaction kinetics. A flat plate reactor was designed for the specific purpose of investigating the influence of various reaction parameters, specifically photocatalytic film thickness, solution flow rate (1–8 l min−1), phenol concentration (20, 40 and 80 ppm), and irradiation intensity (70.6, 57.9, 37.1and 20.4 W m−2), in order to further understand their impact on the reaction kinetics. Special attention was given to the mass transfer phenomena and the influence of film thickness. The kinetics of phenol degradation were investigated with different irradiation levels and initial pollutant concentration. Photocatalytic degradation experiments were performed to evaluate the influence of mass transfer on the reaction and, in addition, the benzoic acid method was applied for the evaluation of mass transfer coefficient. For this study the reactor was modelled as a batch-recycle reactor. A system of equations that accounts for irradiation, mass transfer and reaction rate was developed to describe the photocatalytic process, to fit the experimental data and to obtain kinetic parameters. The rate of phenol photocatalytic oxidation was described by a Langmuir–Hinshelwood type law that included competitive adsorption and degradation of phenol and its by-products. The by-products were modelled through their additive effect on the solution total organic carbon.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ability of the technique of large-amplitude Fourier transformed (FT) ac voltammetry to facilitate the quantitative evaluation of electrode processes involving electron transfer and catalytically coupled chemical reactions has been evaluated. Predictions derived on the basis of detailed simulations imply that the rate of electron transfer is crucial, as confirmed by studies on the ferrocenemethanol (FcMeOH)-mediated electrocatalytic oxidation of ascorbic acid. Thus, at glassy carbon, gold, and boron-doped diamond electrodes, the introduction of the coupled electrocatalytic reaction, while producing significantly enhanced dc currents, does not affect the ac harmonics. This outcome is as expected if the FcMeOH (0/+) process remains fully reversible in the presence of ascorbic acid. In contrast, the ac harmonic components available from FT-ac voltammetry are predicted to be highly sensitive to the homogeneous kinetics when an electrocatalytic reaction is coupled to a quasi-reversible electron-transfer process. The required quasi-reversible scenario is available at an indium tin oxide electrode. Consequently, reversible potential, heterogeneous charge-transfer rate constant, and charge-transfer coefficient values of 0.19 V vs Ag/AgCl, 0.006 cm s (-1) and 0.55, respectively, along with a second-order homogeneous chemical rate constant of 2500 M (-1) s (-1) for the rate-determining step in the catalytic reaction were determined by comparison of simulated responses and experimental voltammograms derived from the dc and first to fourth ac harmonic components generated at an indium tin oxide electrode. The theoretical concepts derived for large-amplitude FT ac voltammetry are believed to be applicable to a wide range of important solution-based mediated electrocatalytic reactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spontaneous adsorption of 1,8,15,22-tetraaminophthalocyanatocobalt(II) (4α-CoIITAPc) on glassy carbon (GC) electrode leads to the formation of a stable self-assembled monolayer (SAM). Since the SAM of 4α-CoIITAPc is redox active, its adsorption on GC electrode was followed by cyclic voltammetry. SAM of 4α-CoIITAPc on GC electrode shows two pairs of well-defined redox peaks corresponding to CoIII/CoII and CoIIIPc−1/CoIIIPc−2. The surface coverage (Γ) value, calculated by integrating the charge under CoII oxidation, was used to study the adsorption thermodynamics and kinetics of 4α-CoIITAPc on GC surface. Cyclic voltammetric studies show that the adsorption of 4α-CoIITAPc on GC electrode has reached the saturation coverage (Γs) within 3 h. The Γs value for the SAM of 4α-CoIITAPc on GC electrode was found to be 2.37 × 10−10 mol cm−2. Gibbs free energy (ΔGads) and adsorption rate constant (kad) for the adsorption of 4α-CoIITAPc on GC surface were found to be −16.76 kJ mol−1 and 7.1 M−1 s−1, respectively. The possible mechanism for the self-assembly of 4α-CoIITAPc on GC surface is through the addition of nucleophilic amines to the olefinic bond on the GC surface in addition to a meager contribution from π stacking. The contribution of π stacking was confirmed from the adsorption of unsubstituted phthalocyanatocobalt(II) (CoPc) on GC electrode. Raman spectra for the SAM of 4α-CoIITAPc on carbon surface shows strong stretching and breathing bands of Pc macrocycle, pyrrole ring and isoindole ring. Raman and CV studies suggest that 4α-CoIITAPc is adopting nearly a flat orientation or little bit tilted orientation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This is the first report on studies carried out in detail on high-pressure oxygen copolymerization (> 50 psi) of the vinyl monomers styrene and alpha-methylstyrene (AMS). The saturation pressure of oxygen for AMS oxidation, hitherto obscure, is found to be 300 psi. Whereas the ease of oxidation is more favorable for styrene, the rate and yield of polyperoxide formation are higher for AMS. This is explained on the basis of the reactivity of the corresponding alkyl and peroxy radicals. Below 50 degrees C, degradation of the poly(styrene peroxide) formed is about 2.5 times less than that observed above 50 degrees C, so much so that it gives a break in the rate curve, and thereafter the rate is lowered. Normal free radical kinetics is followed before the break point, after which the monomer and initiator exponents become unusually high. This is interpreted on the basis of chain transfer to the degradation products. The low molecular weight of polyperoxides has been attributed to the (i) low reactivity of RO(2)(.) toward the monomer, (ii) chain transfer to degradation products, (iii) facile cleavage of O-O bond, followed by unzipping to nonradical products, and (iv) higher stability of the reinitiating radicals. At lower temperatures, (i) predominates, whereas at higher temperatures, chiefly (ii)-(iv) are the case.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The presence of two essential tryptophan residues/molecule was implicated in the binding site of Abrus agglutinin [Patanjali, Swamy, Anantharam, Khan & Surolia (1984) Biochem. J. 217, 773-781]. A detailed study of the stopped-flow kinetics of the oxidation of tryptophan residues revealed three classes of tryptophan residues in the native protein. A discrete reorganization of tryptophan residues into two phases was observed upon ligand binding. The heterogeneity of tryptophan exposure was substantiated by quenching studies with acrylamide, succinimide and Cs+. Our study revealed the microenvironment of tryptophan residues to be hydrophobic, and also the presence of acidic amino acid residues in the vicinity of surface-localized tryptophan residues.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vanadate in the polymeric form of decavanadate, but not other forms, stimulated oxidation of NADH to NAD+ NADPH was also oxidized with comparable rates. This oxidation of NADH was accompanied by uptake of oxygen and generated hydrogen peroxide with the following stoichiometry: NADH + H+ + O2 → NAD+ + H2O2. The reaction followed second-order kinetics. The rate was dependent on the concentration of both NADH and vanadate and increased with decreasing pH. The reaction had an obligatory requirement for phosphate ions. Esr studies in the presence of the spin trap dimethyl pyrroline N oxide indicated the involvement of Superoxide anion as an intermediate. The reaction was sensitive to Superoxide dismutase and other scavengers of superoxide anions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1. Cell-free extracts of Arthrobacter synephrinum catalyse the oxidation of 3,4-dihydroxy-phenylacetate. 2. The product of oxidation was characterized as 2-hydroxy-5-carboxymethylmuconate semialdehyde from its chemical behaviour as well as from nuclear-magnetic-resonance spectra. 3. A 3,4-dihydroxyphenylacetate 2,3-dioxygenase (EC 1.13.11.15) was partially purified from A. synephrinum. 4. The enzyme had a Km of 25 micrometer towards its substrate and exhibited typical Michaelis-Menten kinetics. 5. The enzyme also catalysed the oxidation of 3,4-dihydroxymandelate and 3,4-dihydroxyphenylpropionate, at reaction rates of 0.5 and 0.04 respectively of that for 3,4-dihydroxyphenylacetate. 6. The enzyme was sensitive to treatment with thiol-specific reagents. 7. The molecular weight of the enzyme as determined by Sephadex G-200 chromatography was approx. 282000.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ferrous iron bio-oxidation by Acidithiobacillus ferrooxidans immobilized on polyurethane foam was investigated. Cells were immobilized on foams by placing them in a growth environment and fully bacterially activated polyurethane foams (BAPUFs) were prepared by serial subculturing in batches with partially bacterially activated foam (pBAPUFs). The dependence of foam density on cell immobilization process, the effect of pH and BAPUF loading on ferrous oxidation were studied to choose operating parameters for continuous operations. With an objective to have high cell densities both in foam and the liquid phase, pretreated foams of density 50 kg/m3 as cell support and ferrous oxidation at pH 1.5 to moderate the ferric precipitation were preferred. A novel basket-type bioreactor for continuous ferrous iron oxidation, which features a multiple effect of stirred tank in combination with recirculation, was designed and operated. The results were compared with that of a free cell and a sheet-type foam immobilized reactors. A fivefold increase in ferric iron productivity at 33.02 g/h/L of free volume in foam was achieved using basket-type bioreactor when compared to a free cell continuous system. A mathematical model for ferrous iron oxidation by Acidithiobacillus ferrooxidans cells immobilized on polyurethane foam was developed with cell growth in foam accounted by an effectiveness factor. The basic parameters of simulation were estimated using the experimental data on free cell growth as well as from cell attachment to foam under nongrowing conditions. The model predicted the phase of both oxidation of ferrous in shake flasks by pBAPUFs as well as by fully activated BAPUFs for different cell loadings in foam. Model for stirred tank basket bioreactor predicted within 5% both transient and steady state of the experiments closely for the simulated dilution rates. Bio-oxidation at high Fe2+ concentrations were simulated with experiments when substrate and product inhibition coefficients were factored into cell growth kinetics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The kinetics of oxidation of acetaldehyde to acetic acid was studied in a sparger reactor using manganese acetate as the catalyst. Data obtained in a stirred tank reactor are used for analyzing the sparger reactor data. The rate of chemical reaction is extremely fast and can be neglected for the rate equation of the sparger reactor. A kinetic model applicable at any temperature and concentration within the range of the variables studied is developed which predicts the performance of the sparger reactor satisfactorily.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The kinetics of the vapor phase oxidation of p-xylene over ferric molybdate catalyst were studied in an isothermal, differential, tubular flow reactor in the temperature range of 360 to 420° C. The major product obtained was p-tolualdehyde with small amounts of maleic anhydride and p-toluic acid. No terephthalic acid or CO2 were observed. The reaction rate data collected fit the redox model given by Equation 1. The values of activation energies Ex, Eo and frequency factors Ax, Ao obtained are 72, 63 kJ/mol and 0.64, 2.89 m3/kg catalyst s respectively. The reaction mechanism was established by studying the oxidation of p-tolualdehyde, toluic and terephthalic acids. It is concluded that the reaction follows a parallel-consecutive scheme. On a étudié la cinétique de l'oxydation, en phase gazeuse, du para-xylène sur un catalyseur consistant en molybdate ferrique; cette oxydation s'est faite dans un réacteur à écoulement tubulaire, isothermique et différentiel, dans une échelle de températures comprises entre 360°C et 420°C. Le produit principal obtenu a été le para-tolualdéhyde; on a aussi trouvé de faibles quantités d'anhydride maléique et d'acide para-toluique, mais on n'a pas noté la présence d'acide téréphtalique ni d'anhydride carbonique (CO2). Les résultats obtenus en ce qui a trait à la vitesse de réaction concordent bien avec les données du modèle redox indiquées par l'équation 1. Les valeurs des énergies d'activation Ex et Eo ainsi que des facteurs de fréquence Ax et Ao obtenus sont respectivement 72 et 63 kilojoules/mol. et 0.64 × 103 et 2.89 m3/kg de catalyseur. On a établi le mécanisme de la réaction en étudiant l'oxydation du para-tolualdéhyde et des acides toluique et téréphtalique. On conclut que la réaction se fait d'une manière parallèle et consécutive.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The kinetics of oxidation of aqueous acidic ferrous sulphate by Thiobacillus ferrooxidans has been studied in a batch reactor. The contribution of cell wall envelopes to the oxidation rate has been shown to be negligible. A model which accounts for the oxidation of Fe2 +, death of bacteria due to Fe3 + poisoning, existence of an optimal pH and precipitation of Fe3 + has been proposed. The model is able to predict the concentration of Fe2 + and pH quite satisfactorily. The predictions of Fe3 + are not so accurate because of simplifying assumptions made about its precipitation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cathodic reduction of oxygen in fuel cells is known to be enhanced on platinum alloys in relation to the platinum metal. The higher performance of the platinum alloys is as a result of the improved oxygen-reduction kinetics on the alloys but there is hardly any increase in the electrode platinum-surface-areas for the platinum alloys as compared to the platinum metal, and thus the higher performance is solely due to the enhanced electrocatalytic activity of the alloys as compared to the platinum metal. The present X-ray photoelectron spectroscopic (XPS) study on carbon-supported Pt, Pt–Co and Pt–Co–Cr electrocatalysts suggests the presence of a relatively lower Pt-oxide content on the alloys. The X-ray powder diffraction patterns for these electrocatalysts show that while the carbon-supported platinum electrocatalyst has a face-centered cubic (fcc) phase, carbon-supported Pt–Co and Pt–Co–Cr electrocatalysts exhibit a face-centered tetragonal (fct) phase. But, Pt electrocatalyst has a lower particle-size and, hence, a higher dispersion. Previous studies have shown higher activities on the Pt-alloys than on Pt, and have attributed it to changes in the electronic and structural characteristics of Pt. These changes can be correlated with the lower oxidation-state of Pt sites, as found in this study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Preferential oxidation of CO (CO-PROX) was carried out over Ni supported on CeO2 prepared by the co-precipitation method. The influence of metal loadings (2.5, 5 and 10 wt.% Ni) and the reaction conditions such as reaction temperature and feed composition on CO oxidation and oxidation selectivity were evaluated by using dry reformate gas. No other reactions like CO or CO2 methanation, coking, reverse water gas shift (RWGS) reaction is observed in the temperature range of 100-200 A degrees C on these catalysts. Hydrogen oxidation dominates over CO oxidation above the temperature of 200 A degrees C. An increase in oxygen leads to an increase in CO conversion but a simultaneous decrease in the O-2 selectivity. It has been noticed that 5 and 10 % Ni/CeO2 show better catalytic activity towards CO-PROX reaction. These catalysts were characterized by S-BET, XRD, TEM, XPS and H-2-TPR.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Late-transition-metal-doped Pt clusters are prevalent in CO oxidation catalysis, as they exhibit better catalytic activity than pure Pt, while reducing the effective cost and poisoning However, completely eliminating the critical problem of Pt poisoning still poses a big challenge. Here, we report for the first time that, among the bimetallic clusters ((Pt3M where M = Co, Ni, and Cu)/MgO(100)), the CO adsorption site inverts for Pt3Co/MgO(100) from Pt to Co, due to the complete uptake of Pt d-states by lattice oxygen. While this resolves the problem of Pt poisoning, good reaction kinetics are predicted through low barriers for Langmuir-Hinshelwood and Mars van Krevelen (MvK) mechanisms of CO oxidation for Pt3Co/MgO(100) and Li-doped MgO(100), respectively. Li doping in MgO(100) compensates for the charge imbalance caused by a spontaneous oxygen vacancy formation. Pt-3 Co/Li-doped MgO(100) stands out as an exceptional CO oxidation catalyst, giving an MvK reaction barrier as low as 0.11 eV. We thereby propose a novel design strategy of d-band center inversion for CO oxidation catalysts with no Pt poisoning and excellent reaction kinetics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this article, the SrFeO3-delta photocatalyst was synthesized by a solution combustion method and applied for the photocatalytic degradation of aqueous nitrobenzene in the presence and absence of H2O2. The SrFeO3-delta photocatalyst was characterized by XRD, FT-IR, FE-SEM, TEM, TG-DTG, XPS, and UV visible spectroscopy. The band gap energy of SrFeO3-delta was found to be 3.75 eV which lies in the UV region. The XPS results indicate that the oxidation state of Sr and Fe in SrFeO3-delta was 2+ and 3+, respectively, and the surface atomic ratio of Sr and Fe is 0.995. The photocatalytic activity reveals that the degradation of nitrobenzene over the SrFeO3-delta catalyst itself (UV/SFO) is superior compared to SrFeO3-delta in the presence of H2O2 (UV/SFO/H2O2) with a degradation efficiency of 99-96%. The degradation of nitrobenzene obeys first-order kinetics in both UV/SFO and UV/SFO/H2O2 processes. The decrease in degradation efficiency with UV/SFO/H2O2 was attributed due to the formation of strontium carbonate on the photocatalyst surface.