454 resultados para Neurospora crassa


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Radiolabel from [3H]myristic acid was incorporated by Neurospora crassa into the core catalytic subunit 1 of cytochrome c oxidase (EC 1.9.3.1), as indicated by immunoprecipitation. This modification of the subunit, which was specific for myristic acid, represents an uncommon type of myristoylation through an amide linkage at an internal lysine, rather than an N-terminal glycine. The [3H]myristate, which was chemically recovered from the radiolabeled subunit peptide, modified an invariant Lys-324, based upon analyses of proteolysis products. This myristoylated lysine is found within one of the predicted transmembrane helices of subunit 1 and could contribute to the environment of the active site of the enzyme. The myristate was identified by mass spectrometry as a component of mature subunit 1 of a catalytically active, purified enzyme. To our knowledge, fatty acylation of a mitochondrially synthesized inner-membrane protein has not been reported previously.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have developed a system for the isolation of Neurospora crassa mutants that shows altered responses to blue light. To this end we have used the light-regulated promoter of the albino-3 gene fused to the neutral amino acid permease gene mtr. The product of the mtr gene is required for the uptake of neutral aliphatic and aromatic amino acids, as well as toxic analogs such as p-flurophenylalanine or 4-methyltryptophan. mtr trp-2-carrying cells were transformed with the al-3 promoter-mtr wild-type gene (al-3p-mtr+) to obtain a strain with a light-regulated tryptophan uptake. This strain is sensitive to p-fluorophenylalanine when grown under illumination and resistant when grown in the dark. UV mutagenesis of the al-3p-mtr(+)-carrying strain allowed us to isolate two mutant strains, BLR-1 and BLR-2 (blue light regulator), that are light-resistant to p-fluorophenylalanine and have lost the ability to grow on tryptophan. These two strains have a pale-orange phenotype and show down-regulation of all the photoregulated genes tested (al-3, al-1, con-8, and con-10). Mutations in the BLR strains are not allelic with white collar 1 or white collar 2, regulatory genes that are also involved in the response to blue light.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The alpha-crystallin-related heat shock proteins are produced by all eukaryotes, but the role of these proteins in thermoprotection remains unclear. To investigate the function of one of these proteins, we disrupted expression of the single-copy hsp30 gene of Neurospora crassa, using repeat-induced point mutagenesis, and we generated and characterized mutant strains that were deficient in hsp30 synthesis. These strains could grow at high temperature and they acquired thermotolerance from a heat shock. However, the hsp30-defective strains proved to be extremely sensitive to the combined stresses of high temperature and carbohydrate limitation, enforced by the addition of a nonmetabolizable glucose analogue. Under these conditions, their survival was reduced by 90% compared with wild-type cells. This sensitive phenotype was reversed by reintroduction of a functional hsp30 gene into the mutant strains. The mutant cells contained mitochondria from which a 22-kDa protein was readily extracted with detergents, in contrast to its retention by the mitochondria of wild-type cells. Antibodies against hsp30 coimmunoprecipitated a protein also of approximately 22 kDa from wild-type cells. Results of this study suggest that hsp30 may be important for efficient carbohydrate utilization during high temperature stress and that it may interact with other mitochondrial membrane proteins and function as a protein chaperone.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The filamentous fungus Neurospora crassa possesses two nonhomologous high-affinity phosphate permeases, PHO-4 and PHO-5. We have isolated separate null mutants of these permeases, allowing us to study the remaining active transporter in vivo in terms of phosphate uptake and sensitivity to inhibitors. The specificity for the cotransported cation differs for PHO-4 and PHO-5, suggesting that these permeases employ different mechanisms for phosphate translocation. Phosphate uptake by PHO-4 is stimulated 85-fold by the addition of Na+, which supports the idea that PHO-4 is a Na(+)-phosphate symporter. PHO-5 is unaffected by Na+ concentration but is much more sensitive to elevated pH than is PHO-4. Presumably, PHO-5 is a H(+)-phosphate symporter. Na(+)-coupled symport is usually associated with animal cells. The finding of such a system in a filamentous fungus is in harmony with the idea that the fungal and animal kingdoms are more closely related to each other than either is to the plant kingdom.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The sulfur regulatory system of Neurospora crassa is composed of a set of structural genes involved in sulfur catabolism controlled by a genetically defined set of trans-acting regulatory genes. These sulfur regulatory genes include cys-3+, which encodes a basic region-leucine zipper transcriptional activator, and the negative regulatory gene scon-2+. We report here that the scon-2+ gene encodes a polypeptide of 650 amino acids belonging to the expanding beta-transducin family of eukaryotic regulatory proteins. Specifically, SCON2 protein contains six repeated G beta-homologous domains spanning the C-terminal half of the protein. SCON2 represents the initial filamentous fungal protein identified in the beta-transducin group. Additionally, SCON2 exhibits a specific amino-terminal domain that potentially defines another subfamily of beta-transducin homologs. Expression of the scon-2+ gene has been examined using RNA hybridization and gel mobility-shift analysis. The dependence of scon-2+ expression on CYS3 function and the binding of CYS3 to the scon-2+ promoter indicate the presence of an important control loop within the N. crassa sulfur regulatory circuit involving CYS3 activation of scon-2+ expression. On the basis of the presence of beta-transducin repeats, the crucial role of SCON2 in the signal-response pathway triggered by sulfur limitation may be mediated by protein-protein interactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chitosan permeabilizes plasma membrane and kills sensitive filamentous fungi and yeast. Membrane fluidity and cell energy determine chitosan sensitivity in fungi. A five-fold reduction of both glucose (main carbon (C) source) and nitrogen (N) increased 2-fold Neurospora crassa sensitivity to chitosan. We linked this increase with production of intracellular reactive oxygen species (ROS) and plasma membrane permeabilization. Releasing N. crassa from nutrient limitation reduced chitosan antifungal activity in spite of high ROS intracellular levels. With lactate instead of glucose, C and N limitation increased N. crassa sensitivity to chitosan further (4-fold) than what glucose did. Nutrient limitation also increased sensitivity of filamentous fungi and yeast human pathogens to chitosan. For Fusarium proliferatum, lowering 100-fold C and N content in the growth medium, increased 16-fold chitosan sensitivity. Similar results were found for Candida spp. (including fluconazole resistant strains) and Cryptococcus spp. Severe C and N limitation increased chitosan antifungal activity for all pathogens tested. Chitosan at 100 μg ml-1 was lethal for most fungal human pathogens tested but non-toxic to HEK293 and COS7 mammalian cell lines. Besides, chitosan increased 90% survival of Galleria mellonella larvae infected with C. albicans. These results are of paramount for developing chitosan as antifungal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chitosan is a natural polymer with antimicrobial activity. Chitosan causes plasma membrane permeabilization and induction of intracellular reactive oxygen species (ROS) in Neurospora crassa. We have determined the transcriptional profile of N. crassa to chitosan and identified the main gene targets involved in the cellular response to this compound. Global network analyses showed membrane, transport and oxidoreductase activity as key nodes affected by chitosan. Activation of oxidative metabolism indicates the importance of ROS and cell energy together with plasma membrane homeostasis in N. crassa response to chitosan. Deletion strain analysis of chitosan susceptibility pointed NCU03639 encoding a class 3 lipase, involved in plasma membrane repair by lipid replacement, and NCU04537 a MFS monosaccharide transporter related to assimilation of simple sugars, as main gene targets of chitosan. NCU10521, a glutathione S-transferase-4 involved in the generation of reducing power for scavenging intracellular ROS is also a determinant chitosan gene target. Ca2+ increased tolerance to chitosan in N. crassa. Growth of NCU10610 (fig 1 domain) and SYT1 (a synaptotagmin) deletion strains was significantly increased by Ca2+ in the presence of chitosan. Both genes play a determinant role in N. crassa membrane homeostasis. Our results are of paramount importance for developing chitosan as an antifungal.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Part I: Synthesis of L-Amino Acid Oxidase by a Serine- or Glycine-Requiring Strain of Neurospora

Wild-type cultures of Neurospora crassa growing on minimal medium contain low levels of L-amino acid oxidase, tyrosinase, and nicotinarnide adenine dinucleotide glycohydrase (NADase). The enzymes are derepressed by starvation and by a number of other conditions which are inhibitory to growth. L-amino acid oxidase is, in addition, induced by growth on amino acids. A mutant which produces large quantities of both L-amino acid oxidase and NADase when growing on minimal medium was investigated. Constitutive synthesis of L-amino acid oxidase was shown to be inherited as a single gene, called P110, which is separable from constitutive synthesis of NADase. P110 maps near the centromere on linkage group IV.

L-amino acid oxidase produced constitutively by P110 was partially purified and compared to partially purified L-amino acid oxidase produced by derepressed wild-type cultures. The enzymes are identical with respect to thermostability and molecular weight as judged by gel filtration.

The mutant P110 was shown to be an incompletely blocked auxotroph which requires serine or glycine. None of the enzymes involved in the synthesis of serine from 3-phosphoglyceric acid or glyceric acid was found to be deficient in the mutant, however. An investigation of the free intracellular amino acid pools of P110 indicated that the mutant is deficient in serine, glycine, and alanine, and accumulates threonine and homoserine.

The relationship between the amino acid requirement of P110 and its synthesis of L-amino acid oxidase is discussed.

Part II: Studies Concerning Multiple Electrophoretic Forms of Tyrosinase in Neurospora

Supernumerary bands shown by some crude tyrosinase preparations in paper electrophoresis were investigated. Genetic analysis indicated that the location of the extra bands is determined by the particular T allele present. The presence of supernumerary bands varies with the method used to derepress tyrosinase production, and with the duration of derepression. The extra bands are unstable and may convert to the major electrophoretic band, suggesting that they result from modification of a single protein. Attempts to isolate the supernumerary bands by continuous flow paper electrophoresis or density gradient zonal electrophoresis were unsuccessful.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

High-affinity nitrate transport was examined in intact hyphae of Neurospora crassa using electrophysiological recordings to characterize the response of the plasma membrane to NO3- challenge and to quantify transport activity. The NO3(-)-associated membrane current was determined using a three electrode voltage clamp to bring membrane voltage under experimental control and to compensate for current dissipation along the longitudinal cell axis. Nitrate transport was evident in hyphae transferred to NO3(-)-free, N-limited medium for 15 hr, and in hyphae grown in the absence of a nitrogen source after a single 2-min exposure to 100 microM NO3-. In the latter, induction showed a latency of 40-80 min and rose in scalar fashion with full transport activity measurable approx. 100 min after first exposure to NO3-; it was marked by the appearance of a pronounced sensitivity of membrane voltage to extracellular NO3- additions which, after induction, resulted in reversible membrane depolarizations of (+)54-85 mV in the presence of 50 microM NO3-; and it was suppressed when NH4+ was present during the first, inductive exposure to NO3-. Voltage clamp measurements carried out immediately before and following NO3- additions showed that the NO3(-)-evoked depolarizations were the consequence of an inward-directed current that appeared in parallel with the depolarizations across the entire range of accessible voltages (-400 to +100 mV). Measurements of NO3- uptake using NO3(-)-selective macroelectrodes indicated a charge stoichiometry for NO3- transport of 1(+):1(NO3-) with common K(m) and Jmax values around 25 microM and 75 pmol NO3- cm-2sec-1, respectively, and combined measurements of pHo and [NO3-]o showed a net uptake of approx. 1 H+ with each NO3- anion. Analysis of the NO3- current demonstrated a pronounced voltage sensitivity within the normal physiological range between -300 and -100 mV as well as interactions between the kinetic parameters of membrane voltage, pHo and [NO3-]o. Increasing the bathing pH from 5.5 to 8.0 reduced the current and the associated membrane depolarizations 2- to 4-fold. At a constant pHo of 6.1, driving the membrane voltage from -350 to -150 mV resulted in an approx. 3-fold reduction in the maximum current and a 5-fold rise in the apparent affinity for NO3-. By contrast, the same depolarization effected an approx. 20% fall in the K(m) for transport as a function in [H+]o. These, and additional results are consistent with a charge-coupling stoichiometry of 2(H+) per NO3- anion transported across the membrane, and implicate a carrier cycle in which NO3- binding is kinetically adjacent to the rate-limiting step of membrane charge transit. The data concur with previous studies demonstrating a pronounced voltage-dependence to high-affinity NO3- transport system in Arabidopsis, and underline the importance of voltage as a kinetic factor controlling NO3- transport; finally, they distinguish metabolite repression of NO3- transport induction from its sensitivity to metabolic blockade and competition with the uptake of other substrates that draw on membrane voltage as a kinetic substrate.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

High-affinity nitrate transport was examined in intact hyphae of Neurospora crassa using electrophysiological recordings to characterize the response of the plasma membrane to NO3 - challenge and to quantify transport activity. The NO3 --associated membrane current was determined using a three electrode voltage clamp to bring membrane voltage under experimental control and to compensate for current dissipation along the longitudinal cell axis. Nitrate transport was evident in hyphae transferred to NO3 --free, N-limited medium for 15 hr, and in hyphae grown in the absence of a nitrogen source after a single 2-min exposure to 100 μM NO3 -. In the latter, induction showed a latency of 40-80 min and rose in scalar fashion with full transport activity mensurable approx. 100 min after first exposure to NO3 -; it was marked by the appearance of a pronounced sensitivity of membrane voltage to extracellular NO3 - additions which, after induction, resulted in reversible membrane depolarizations of (+)54-85 mV in the presence of 50 μM NO3 -; and it was suppressed when NH4 +, was present during the first, inductive exposure to NO3 -. Voltage clamp measurements carried out immediately before and following NO3 - additions showed that the NO3 --evoked depolarizations were the consequence of an inward-directed current that appeared in parallel with the depolarizations across the entire range of accessible voltages -400 to +100 mV). Measurements of NO3 - uptake using NO3 --selective macroelectrodes indicated a charge stoichiometry for NO3 - transport of 1(+):1(NO3 -) with common K(m) and J(max) values around 25 μM and 75 pmol NO3 - cm-2sec-1, respectively, and combined measurements of pH(o) and [NO3 -](o) showed a net uptake of approx. 1 H+ with each NO3 - anion. Analysis of the NO3 - current demonstrated a pronounced voltage sensitivity within the normal physiological range between -300 and -100 mV as well as interactions between the kinetic parameters of membrane voltage, pH(o) and [NO3 -](o). Increasing the bathing pH from 5.5 to 8.0 reduced the current and the associated membrane depolarizations 2- to 4-fold. At a constant pH(o) of 6.1, driving the membrane voltage from -350 to -150 mV resulted in an approx. 3-fold reduction in the maximum current and a 5-fold rise in the apparent affinity for NO3 -. By contrast, the same depolarization effected an approx. 20% fall in the K(m) for transport as a function in [H+](o). These, and additional results are consistent with a charge-coupling stoichiometry of 2(H+) per NO anion transported across the membrane, and implicate a carrier cycle in which NO binding is kinetically adjacent to the rate-limiting step of membrane charge transit. The data concur with previous studies demonstrating a pronounced voltage-dependence to high-affinity NO3 - transport system in Arabidopsis, and underline the importance of voltage as a kinetic factor controlling NO3 - transport; finally, they distinguish metabolite repression of NO3 - transport induction from its sensitivity to metabolic blockade and competition with the uptake of other substrates that draw on membrane voltage as a kinetic substrate.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Testing for mutagenicity and carcinogenicity has become an integral part of the toxicological evaluation of drugs and chemicals. Standard carcinogenicity tests in vivo require both large numbers of animals and prolonged experiments. To circumvent these problems, several rapid tests have been developed for preliminary screening of mutagens and carcinogens in vitro. Ames and his associates, the first to develop a mutation test, used mutant strains of Salmonella typhimurium [1]. Mutation tests with Escherichia coli, Bacillus subtilis, Neurospora crassa and Saccharomyces cerevisiae, and DNA-repair tests with E. coli and B. subtilis, have been developed. Cytogenetic assays, in vivo as well as in vitro, in both plant and animal systems, are also used to detect potential mutagens and carcinogens. Transfection is inhibited by base mutation, cleavage of DNA, loss of cohesive ends, interaction with histones, spermidine, nalidixic acid, etc. [3]. The efficiency of transfection is affected by temperature, DNA structure and the condition of the competence of the recipient cells [3]. Transfection assays with phages MS: RNA and ~i, x 174-DNA have been reported [15]. A fast and easy transfection assay using colitis bacteriophage DNA is reported in this communication.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Incorporation of mevalonate-2-C14, acetate-1-C14, and formate-C14 into the lipids of microorganisms was studied. In the case of four bacteria tested—Agrobacterium tumefaciens, Azotobacter vinelandii, Escherichia coli, and a Pseudomonas species—the various homologues of coenzyme Q present were not labeled with any of the tracers used, although significant amounts of radioactivity were present in the lipids. Both acetate and mevalonate were incorporated into coenzyme Q and sterol of the moulds, Aspergillus niger, Neurospora crassa, Penicillium chrysogenum, and Gibberella fujickuroi, and a yeast, Torulopsis utilis. Mevalonate was incorporated into the side chain but not the ring, whereas acetate was incorporated into both. It appears that the mevalonate pathway for the synthesis of coenzyme Q is operative only in those organisms which also contain other isoprene compounds such as sterol and carotene.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The complete amino-acid sequence of sheep liver cytosolic serine hydroxymethyltransferase was determined from an analysis of tryptic, chymotryptic, CNBr and hydroxylamine peptides. Each subunit of sheep liver serine hydroxymethyltransferase consisted of 483 amino-acid residues. A comparison of this sequence with 8 other serine hydroxymethyltransferases revealed that a possible gene duplication event could have occurred after the divergence of animals and fungi. This analysis also showed independent duplication of SHMT genes in Neurospora crassa. At the secondary structural level, all the serine hydroxymethyltransferases belong to the alpha/beta category of proteins. The predicted secondary structure of sheep liver serine hydroxymethyltransferase was similar to that of the observed structure of tryptophan synthase, another pyridoxal 5'-phosphate containing enzyme, suggesting that sheep liver serine hydroxymethyltransferase might have a similar pyridoxal 5'-phosphate binding domain. In addition, a conserved glycine rich region, G L Q G G P, was identified in all the serine hydroxymethyltransferases and could be important in pyridoxal 5'-phosphate binding. A comparison of the cytosolic serine hydroxymethyltransferases from rabbit and sheep liver with other proteins sequenced from both these sources showed that serine hydroxymethyltransferase was a highly conserved protein. It was slightly less conserved than cytochrome c but better conserved than myoglobin, both of which are well known evolutionary markers. C67 and C203 were specifically protected by pyridoxal 5'-phosphate against modification with [C-14]iodoacetic acid, while C247 and C261 were buried in the native serine hydroxymethyltransferase. However, the cysteines are not conserved among the various serine hydroxymethyltransferases. The exact role of the cysteines in the reaction catalyzed by serine hydroxymethyltransferase remains to be elucidated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Light is a universal signal perceived by organisms, including fungi, in which light regulates common and unique biological processes depending on the species. Previous research has established that conserved proteins, originally called White collar 1 and 2 from the ascomycete Neurospora crassa, regulate UV/blue light sensing. Homologous proteins function in distant relatives of N. crassa, including the basidiomycetes and zygomycetes, which diverged as long as a billion years ago. Here we conducted microarray experiments on the basidiomycete fungus Cryptococcus neoformans to identify light-regulated genes. Surprisingly, only a single gene was induced by light above the commonly used twofold threshold. This gene, HEM15, is predicted to encode a ferrochelatase that catalyses the final step in haem biosynthesis from highly photoreactive porphyrins. The C. neoformans gene complements a Saccharomyces cerevisiae hem15Delta strain and is essential for viability, and the Hem15 protein localizes to mitochondria, three lines of evidence that the gene encodes ferrochelatase. Regulation of HEM15 by light suggests a mechanism by which bwc1/bwc2 mutants are photosensitive and exhibit reduced virulence. We show that ferrochelatase is also light-regulated in a white collar-dependent fashion in N. crassa and the zygomycete Phycomyces blakesleeanus, indicating that ferrochelatase is an ancient target of photoregulation in the fungal kingdom.