937 resultados para Muscle Fibers, Skeletal -- immunology


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although canine visceral leishmaniasis (CVL) has been extensively studied, muscular damage due to Leishmania (Leishmania) infantum chagasi infection remains to be fully established. The aim of this study was to describe the electromyographic and histological changes, as well as search for the presence of amastigote forms of Leishmania spp, CD3+ T-lymphocytes, macrophages and IgG in skeletal muscles of dogs with visceral leishmaniasis (VL). Four muscles (triceps brachial, extensor carpi radialis, biceps femoris and gastrocnemius) from a total of 17 naturally infected and six healthy dogs were used in this study. Electromyographic alterations such as fibrillation potentials, positive sharp waves and complex repetitive discharges were observed in, at least, three muscles from all infected dogs. Myocyte necrosis and degeneration were the most frequent muscular injury seen, followed by inflammatory reaction, fibrosis and variation in muscle fibers size. Immunohistochemistry in muscle samples revealed amastigote forms in 4/17 (23. 53%), IgG in 12/17 (70. 58%), CD3+ T-lymphocytes in 16/17 (94. 12%) and macrophages in 17/17 (100%) dogs. Statistically positive correlation was observed between: inflammatory infiltrate (p=0. 0305) and CD3+ immunoreaction (p=0. 0307) in relation to the number of amastigote forms; inflammatory infiltrate (p=0. 0101) and macrophage immunoreaction (p=0. 0127) in relation to the amount of CD3+; and inflammatory infiltrate (p=0. 0044) and degeneration/necrosis (p<0. 0001) in relation to the presence of macrophages. Our results suggest that different mechanisms contribute to the development of myocytotoxicity, including celular and humoral immune responses and direct muscular injury by the parasite. Nevertheless, the catabolic nature of the disease can probably interact with other factors, but cannot be incriminated as the only responsible for myositis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Colossoma macropomum, also known as tambaqui, is an economically important fish species, and interesting new studies have been published with the aim of improving the growth of this fish. In this work, we describe the morphometric characteristics, as well as the mRNA and protein expression levels of two myogenic regulatory factors (MRFs)-myod/MyoD and myogenin/Myogenin-in the white and red muscle types of tambaqui. A high proportion of white and red muscle fibers with large diameters suggest a hypertrophic growth process in the skeletal muscle during juvenile stages. Comparisons between muscle types showed that, in red muscle, myogenin transcript levels were significantly higher than those of myod. In contrast, MyoD protein levels were significantly higher than those of Myogenin in red muscle. These results suggest that in red and white muscles of juvenile tambaqui, independent post-transcriptional mechanisms for regulating MyoD and Myogenin expression may exist, which could be differentially activated during muscle growth. Furthermore, these data also suggest that specific control mechanisms may regulate distinct muscle phenotypes. © 2013 The Royal Swedish Academy of Sciences.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chronic Chagas cardiomyopathy evolves over a long period of time after initial infection by Trypanosoma cruzi. Similarly, a cardiomyopathy appears later in life in muscular dystrophies. This study tested the hypothesis that dystrophin levels are decreased in the early stage of T cruzi-infected mice that precedes the later development of a cardiomyopathy. CD1 mice were infected with T cruzi (Brazil strain), killed at 30 and 100 days post infection (dpi), and the intensity of inflammation, percentage of interstitial fibrosis, and dystrophin levels evaluated. Echocardiography and magnetic resonance imaging data were evaluated from 15 to 100 dpi. At 30 dpi an intense acute myocarditis with ruptured or intact intracellular parasite nests was observed. At 100 dpi a mild chronic fibrosing myocarditis was detected without parasites in the myocardium. Dystrophin was focally reduced or completely lost in cardiomyocytes at 30 dpi, with the reduction maintained up to 100 dpi. Concurrently, ejection fraction was reduced and the right ventricle was dilated. These findings support the hypothesis that the initial parasitic infection-induced myocardial dystrophin reduction/loss, maintained over time, might be essential to the late development of a cardiomyopathy in mice. (C) 2011 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The skeletal muscle phenotype is subject to considerable malleability depending on use. Low-intensity endurance type exercise leads to qualitative changes of muscle tissue characterized mainly by an increase in structures supporting oxygen delivery and consumption. High-load strength-type exercise leads to growth of muscle fibers dominated by an increase in contractile proteins. In low-intensity exercise, stress-induced signaling leads to transcriptional upregulation of a multitude of genes with Ca2+ signaling and the energy status of the muscle cells sensed through AMPK being major input determinants. Several parallel signaling pathways converge on the transcriptional co-activator PGC-1α, perceived as being the coordinator of much of the transcriptional and posttranscriptional processes. High-load training is dominated by a translational upregulation controlled by mTOR mainly influenced by an insulin/growth factor-dependent signaling cascade as well as mechanical and nutritional cues. Exercise-induced muscle growth is further supported by DNA recruitment through activation and incorporation of satellite cells. Crucial nodes of strength and endurance exercise signaling networks are shared making these training modes interdependent. Robustness of exercise-related signaling is the consequence of signaling being multiple parallel with feed-back and feed-forward control over single and multiple signaling levels. We currently have a good descriptive understanding of the molecular mechanisms controlling muscle phenotypic plasticity. We lack understanding of the precise interactions among partners of signaling networks and accordingly models to predict signaling outcome of entire networks. A major current challenge is to verify and apply available knowledge gained in model systems to predict human phenotypic plasticity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Muscle pain and weakness are frequent complaints in patients receiving 3-hydroxymethylglutaryl coenzymeA (HMG CoA) reductase inhibitors (statins). Many patients with myalgia have creatine kinase levels that are either normal or only marginally elevated, and no obvious structural defects have been reported in patients with myalgia only. To investigate further the mechanism that mediates statin-induced skeletal muscle damage, skeletal muscle biopsies from statin-treated and non-statin-treated patients were examined using both electron microscopy and biochemical approaches. The present paper reports clear evidence of skeletal muscle damage in statin-treated patients, despite their being asymptomatic. Though the degree of overall damage is slight, it has a characteristic pattern that includes breakdown of the T-tubular system and subsarcolemmal rupture. These characteristic structural abnormalities observed in the statin-treated patients were reproduced by extraction of cholesterol from skeletal muscle fibres in vitro. These findings support the hypothesis that statin-induced cholesterol lowering per se contributes to myocyte damage and suggest further that it is the specific lipid/protein organization of the skeletal muscle cell itself that renders it particularly vulnerable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The muscle isoform. of clathrin heavy chain, CHC22, has 85% sequence identity to the ubiquitously expressed CHC17, yet its expression pattern and function appear to be distinct from those of well-characterized clathrin-coated vesicles. In mature muscle CHC22 is preferentially concentrated at neuromuscular and myotendinous junctions, suggesting a role at sarcolemmal contacts with extracellular matrix. During myoblast differentiation, CHC22 expression is increased, initially localized with desmin and nestin and then preferentially segregated to the poles of fused myoblasts. CHC22 expression is also increased in regenerating muscle fibers with the same time course as embryonic myosin, indicating a role in muscle repair. CHC22 binds to sorting nexin 5 through a coiled-coil domain present in both partners, which is absent in CHC17 and coincides with the region on CHC17 that binds the regulatory light-chain subunit. These differential binding data suggest a mechanism for the distinct functions of CHC22 relative to CHC17 in membrane traffic during muscle development, repair, and at neuromuscular and myotendinous junctions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Skeletal muscle is a major mass peripheral tissue that accounts for similar to 40% of the total body mass and a major player in energy balance. It accounts for > 30% of energy expenditure, is the primary tissue of insulin stimulated glucose uptake, disposal, and storage. Furthermore, it influences metabolism via modulation of circulating and stored lipid (and cholesterol) flux. Lipid catabolism supplies up to 70% of the energy requirements for resting muscle. However, initial aerobic exercise utilizes stored muscle glycogen but as exercise continues, glucose and stored muscle triglycerides become important energy substrates. Endurance exercise increasingly depends on fatty acid oxidation (and lipid mobilization from other tissues). This underscores the importance of lipid and glucose utilization as an energy source in muscle. Consequently skeletal muscle has a significant role in insulin sensitivity, the blood lipid profile, and obesity. Moreover, caloric excess, obesity and physical inactivity lead to skeletal muscle insulin resistance, a risk factor for the development of type II diabetes. In this context skeletal muscle is an important therapeutic target in the battle against cardiovascular disease, the worlds most serious public health threat. Major risk factors for cardiovascular disease include dyslipidemia, hypertension, obesity, sedentary lifestyle, and diabetes. These risk factors are directly influenced by diet, metabolism and physical activity. Metabolism is largely regulated by nuclear hormone receptors which function as hormone regulated transcription factors that bind DNA and mediate the pathophysiological regulation of gene expression. Metabolism and activity, which directly influence cardiovascular disease risk factors, are primarily driven by skeletal muscle. Recently, many nuclear receptors expressed in skeletal muscle have been shown to improve glucose tolerance, insulin resistance, and dyslipidernia. Skeletal muscle and nuclear receptors are rapidly emerging as critical targets in the battle against cardiovascular disease risk factors. Understanding the function of nuclear receptors in skeletal muscle has enormous pharmacological utility for the treatment of cardiovascular disease. This review focuses on the molecular regulation of metabolism by nuclear receptors in skeletal muscle in the context of dyslipidemia and cardiovascular disease. (c) 2005 Published by Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-intensity exercise leads to reductions in muscle substrates (ATP, PCr, and glycogen) and a subsequent accumulation of metabolites (ADP, Pi, H+, and M2+) with a possible increase in free radical production. These factors independently and collectively have deleterious effects on muscle, with significant repercussions on high-intensity performance or training sessions. The effect of carnosine on overcoming muscle fatigue appears to be related to its ability to buffer the increased H+ concentration following high-intensity work. Carnosine, however, has other roles such as an antioxidant, a metal chelator, a Ca2+ and enzyme regulator, an inhibitor of protein glycosylation and protein-protein cross-linking. To date, only 1 study has investigated the effects of carnosine supplementation (not in pure form) on exercise performance in human subjects and found no improvement in repetitive high-intensity work. Much data has come from in vitro work on animal skeletal muscle fibers or other components of muscle contractile mechanisms. Thus further research needs to be carried out on humans to provide additional understanding on the effects of carnosine in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Caveolae are an abundant feature of many animal cells. However, the exact function of caveolae remains unclear. We have used the zebrafish, Danio rerio, as a system to understand caveolae function focusing on the muscle-specific caveolar protein, caveolin-3 (Cav3). We have identified caveolin-1 (alpha and beta), caveolin-2 and Cav3 in the zebrafish. Zebrafish Cav3 has 72% identity to human CAV3, and the amino acids altered in human muscle diseases are conserved in the zebrafish protein. During embryonic development, cav3 expression is apparent by early segmentation stages in the first differentiating muscle precursors, the adaxial cells and slightly later in the notochord. cav3 expression appears in the somites during mid-segmentation stages and then later in the pectoral fins and facial muscles. Cav3 and caveolae are located along the entire sarcolemma of late stage embryonic muscle fibers, whereas beta-dystroglycan is restricted to the muscle fiber ends. Down-regulation of Cav3 expression causes gross muscle abnormalities and uncoordinated movement. Ultrastructural analysis of isolated muscle fibers reveals defects in myoblast fusion and disorganized myofibril and membrane systems. Expression of the zebrafish equivalent to a human muscular dystrophy mutant, CAV3P104L, causes severe disruption of muscle differentiation. In addition, knockdown of Cav3 resulted in a dramatic up-regulation of eng1a expression resulting in an increase in the number of muscle pioneer-like cells adjacent to the notochord. These studies provide new insights into the role of Cav3 in muscle development and demonstrate its requirement for correct intracellular organization and myoblast fusion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Duchenne muscular dystrophy (DMD) is a neuromuscular disease caused by mutations in the dystrophin gene. DMD is clinically characterized by severe, progressive and irreversible loss of muscle function, in which most patients lose the ability to walk by their early teens and die by their early 20’s. Impaired intracellular calcium (Ca2+) regulation and activation of cell degradation pathways have been proposed as key contributors to DMD disease progression. This dissertation research consists of three studies investigating the role of intracellular Ca2+ in skeletal muscle dysfunction in different mouse models of DMD. Study one evaluated the role of Ca2+-activated enzymes (proteases) that activate protein degradation in excitation-contraction (E-C) coupling failure following repeated contractions in mdx and dystrophin-utrophin null (mdx/utr-/-) mice. Single muscle fibers from mdx/utr-/- mice had greater E-C coupling failure following repeated contractions compared to fibers from mdx mice. Moreover, protease inhibition during these contractions was sufficient to attenuate E-C coupling failure in muscle fibers from both mdx and mdx/utr-/- mice. Study two evaluated the effects of overexpressing the Ca2+ buffering protein sarcoplasmic/endoplasmic reticulum Ca2+-ATPase 1 (SERCA1) in skeletal muscles from mdx and mdx/utr-/- mice. Overall, SERCA1 overexpression decreased muscle damage and protected the muscle from contraction-induced injury in mdx and mdx/utr-/- mice. In study three, the cellular mechanisms underlying the beneficial effects of SERCA1 overexpression in mdx and mdx/utr-/- mice were investigated. SERCA1 overexpression attenuated calpain activation in mdx muscle only, while partially attenuating the degradation of the calpain target desmin in mdx/utr-/- mice. Additionally, SERCA1 overexpression decreased the SERCA-inhibitory protein sarcolipin in mdx muscle but did not alter levels of Ca2+ regulatory proteins (parvalbumin and calsequestrin) in either dystrophic model. Lastly, SERCA1 overexpression blunted the increase in endoplasmic reticulum stress markers Grp78/BiP in mdx mice and C/EBP homologous protein (CHOP) in mdx and mdx/utr-/- mice. Overall, findings from the studies presented in this dissertation provide new insight into the role of Ca2+ in muscle dysfunction and damage in different dystrophic mouse models. Further, these findings support the overall strategy for improving intracellular Ca2+ control for the development of novel therapies for DMD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Regular exercise stimulates numerous structural, metabolic, and morphological adaptations in skeletal muscle. These adaptations are vital to maintain human health over the life span. Exercise is therefore seen as a primary intervention to reduce the risk of chronic disease. Advances in molecular biology, biochemistry, and bioinformatics, combined with exercise physiology, have identified many key signaling pathways as well as transcriptional and translational processes responsible for exercise-induced adaptations. Noncoding RNAs, and specifically microRNAs (miRNAs), constitute a new regulatory component that may play a role in these adaptations. The short single-stranded miRNA sequences bind to the 3' untranslated region of specific messenger RNAs (mRNAs) on the basis of sequence homology. This results in the degradation of the target mRNA or the inhibition of protein translation causing repression of the corresponding protein. While tissue specificity or enrichment of certain miRNAs makes them ideal targets to manipulate and understand tissue development, function, health, and disease, other miRNAs are ubiquitously expressed; however, it is uncertain whether their mRNA/protein targets are conserved across different tissues. miRNAs are stable in plasma and serum and their altered circulating expression levels in disease conditions may provide important biomarker information. The emerging research into the role that miRNAs play in exercise-induced adaptations has predominantly focused on the miRNA species that are regulated in skeletal muscle or in circulation. This chapter provides an overview of these current research findings, highlights the strengths and weaknesses identified to date, and suggests where the exercise-miRNA field may move into the future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated the effects of handling and fixation processes on the two-photon fluorescence spectroscopy of endogenous fluorophors in mouse skeletal muscle. The skeletal muscle was handled in one of two ways: either sectioned without storage or sectioned following storage in a freezer. The two-photon fluorescence spectra measured for different storage or fixation periods show a differential among those samples that were stored in water or were fixed either in formalin or methanol. The spectroscopic results indicate that formalin was the least disruptive fixative, having only a weak effect on the two-photon fluorescence spectroscopy of muscle tissue, whereas methanol had a significant influence on one of the autofluorescence peaks. The two handling processes yielded similar spectral information, indicating no different effects between them.