352 resultados para Macroalgae


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Os Oceanos representam o maior sistema de suporte de vida sendo a uma grande fonte de riqueza, oportunidade e abundância. No entanto, a humanidade tem levado este ecossistema ao seu limite com crescentes níveis de poluição e outras pressões antropogénicas. A introdução de espécies não-nativas é reconhecida como uma das maiores ameaças à biodiversidade e a segunda maior causa de extinção das espécies. A macroalga vermelha Asparagopsis armata é uma espécie invasora originária da Austrália e que atualmente apresenta uma ampla distribuição em todo o globo devido à sua estratégia oportunista, ausência de predadores e altas taxas de crescimento. Uma questão emergente está relacionada com a capacidade destas espécies invasoras produzirem grandes quantidades de metabolitos halogenados potencialmente tóxicos. Esta característica pode representar um perigo adicional para o equilíbrio ecológico da comunidade invadida. O presente trabalho teve como objetivo avaliar o potencial ecotoxicológico dos exsudatos de A. armata usando um gastrópode, Gibbula umbilicalis, como organismo modelo. A macroalga recolhida na costa de Peniche (Portugal) foi colocada em tanques no laboratório, durante 12 h, sendo depois o meio recolhido e filtrado para ensaios posteriores com os exsudatos da alga. No ensaio agudo, observou-se a mortalidade de G. umbilicalis que foi exposta a crescentes diluições do exsudato durante 96 h. Adicionalmente, os gastrópodes foram expostos a concentrações não letais do exsudato e analisou-se as respostas bioquímicas recorrendo a biomarcadores relacionados com destoxificação, defesas antioxidantes, danos oxidativos, danos neurotóxicos e metabolismo energético. Os resultados revelaram que os exsudatos de A. armata afetaram significativamente a sobrevivência dos organismos expostos com uma CL50 96h de 5.03% de exsudato da alga. A exposição aos exsudatos da alga também resultou em efeitos bioquímicos e metabólicos ao nível subcelular com resultados significativos na inibição da glutationa-S-transferase (GST), perda de integridade do ADN e níveis crescentes de atividade da lactato desidrogenase (LDH), dando uma indicação dos mecanismos de toxicidade desta alga marinha. Os níveis mais elevados de danos no ADN ocorreram quando a GST apresentou os níveis mais baixos de atividade e esta mesma atividade aumentou quando os danos no ADN diminuíram, em simultâneo com o aumento dos níveis de atividade da LDH, indicando que as necessidades energéticas aumentam devido à necessidade de sintetizar mais enzima. Conclui-se que a A. armata tem capacidade de libertar substâncias tóxicas que podem ter potenciais impactos no ambiente envolvente. Adicionalmente, as respostas bioquímicas estudadas em G. umbilicalis têm potencial para serem usadas como sinais de aviso na determinação dos efeitos provocados pelos compostos libertados por esta macroalga vermelha.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kelp forests dominate temperate and polar rocky coastlines and represent critical marine habitats because they support elevated rates of primary and secondary production and high biodiversity. A major threat to the stability of these ecosystems is the proliferation of non-native species, such as the Japanese kelp Undariapinnatifida (‘Wakame’), which has recently colonised natural habitats in the UK. We quantified the abundance and biomass of U. pinnatifida on a natural rocky reef habitat over 10 months to make comparisons with three native canopy-forming brown algae (Laminaria ochroleuca, Saccharina latissima, and Saccorhiza polyschides). We also examined the biogenic habitat structure provided by, and epibiotic assemblages associated with, U. pinnatifida in comparison to native macroalgae. Surveys conducted within the Plymouth Sound Special Area of Conservation indicated that U. pinnatifida is now a dominant and conspicuous member of kelp-dominated communities on natural substrata. Crucially, U. pinnatifida supported a structurally dissimilar and less diverse epibiotic assemblage than the native perennial kelp species. However, U. pinnatifida-associated assemblages were similar to those associated with Saccorhiza polyschides, which has a similar life history and growth strategy. Our results suggest that a shift towards U. pinnatifida dominated reefs could result in impoverished epibiotic assemblages and lower local biodiversity, although this could be offset, to some extent, by the climate-driven proliferation of L. ochroleuca at the poleward range edge, which provides complex biogenic habitat and harbours relatively high biodiversity. Clearly, greater understanding of the long-term dynamics and competitive interactions between these habitat-forming species is needed to accurately predict future biodiversity patterns.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kelp forests dominate temperate and polar rocky coastlines and represent critical marine habitats because they support elevated rates of primary and secondary production and high biodiversity. A major threat to the stability of these ecosystems is the proliferation of non-native species, such as the Japanese kelp Undariapinnatifida (‘Wakame’), which has recently colonised natural habitats in the UK. We quantified the abundance and biomass of U. pinnatifida on a natural rocky reef habitat over 10 months to make comparisons with three native canopy-forming brown algae (Laminaria ochroleuca, Saccharina latissima, and Saccorhiza polyschides). We also examined the biogenic habitat structure provided by, and epibiotic assemblages associated with, U. pinnatifida in comparison to native macroalgae. Surveys conducted within the Plymouth Sound Special Area of Conservation indicated that U. pinnatifida is now a dominant and conspicuous member of kelp-dominated communities on natural substrata. Crucially, U. pinnatifida supported a structurally dissimilar and less diverse epibiotic assemblage than the native perennial kelp species. However, U. pinnatifida-associated assemblages were similar to those associated with Saccorhiza polyschides, which has a similar life history and growth strategy. Our results suggest that a shift towards U. pinnatifida dominated reefs could result in impoverished epibiotic assemblages and lower local biodiversity, although this could be offset, to some extent, by the climate-driven proliferation of L. ochroleuca at the poleward range edge, which provides complex biogenic habitat and harbours relatively high biodiversity. Clearly, greater understanding of the long-term dynamics and competitive interactions between these habitat-forming species is needed to accurately predict future biodiversity patterns.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Analysis of gut contents and stable isotope composition of intertidal limpets (Patella vulgata) showed a major contribution of macroalgae to their diet, along with microalgae and invertebrates. Specimens were collected in areas with limited access to attached macroalgae, suggesting a major dietary component of drift algae. Gut contents of 480 animals from 2 moderately wave-exposed and 2 sheltered rocky shores in each of 2 regions (western Scotland, 55-56°N; and southwest England, 50°N), were analysed in 2 years (n = 30 site-1 yr-1). The abundance of microalgae, macroalgae and invertebrates within the guts was quantified using categorical abundance scales. Gut content composition was compared among regions and wave exposure conditions, showing that the diet of P. vulgata changes with both wave exposure and latitude. Microalgae were most abundant in limpet gut contents in animals from southwestern sites, whilst leathery/corticated macroalgae were more prevalent and abundant in limpets from sheltered and northern sites. P. vulgata appears to have a more flexible diet than previously appreciated, and these keystone grazers consume not only microalgae, but also large quantities of macroalgae and small invertebrates. To date, limpet grazing studies have focussed on their role in controlling recruitment of macroalgae by feeding on microscopic propagules and germlings. Consumption of adult algae suggests that P. vulgata may also directly control the biomass of attached macroalgae on the shore, whilst consumption of drift algae indicates that the species may play important roles in coupling subtidal and intertidal production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Analysis of gut contents and stable isotope composition of intertidal limpets (Patella vulgata) showed a major contribution of macroalgae to their diet, along with microalgae and invertebrates. Specimens were collected in areas with limited access to attached macroalgae, suggesting a major dietary component of drift algae. Gut contents of 480 animals from 2 moderately wave-exposed and 2 sheltered rocky shores in each of 2 regions (western Scotland, 55-56°N; and southwest England, 50°N), were analysed in 2 years (n = 30 site-1 yr-1). The abundance of microalgae, macroalgae and invertebrates within the guts was quantified using categorical abundance scales. Gut content composition was compared among regions and wave exposure conditions, showing that the diet of P. vulgata changes with both wave exposure and latitude. Microalgae were most abundant in limpet gut contents in animals from southwestern sites, whilst leathery/corticated macroalgae were more prevalent and abundant in limpets from sheltered and northern sites. P. vulgata appears to have a more flexible diet than previously appreciated, and these keystone grazers consume not only microalgae, but also large quantities of macroalgae and small invertebrates. To date, limpet grazing studies have focussed on their role in controlling recruitment of macroalgae by feeding on microscopic propagules and germlings. Consumption of adult algae suggests that P. vulgata may also directly control the biomass of attached macroalgae on the shore, whilst consumption of drift algae indicates that the species may play important roles in coupling subtidal and intertidal production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rising anthropogenic CO2 in the atmosphere is accompanied by an increase in oceanic CO2 and a concomitant decline in seawater pH (ref. 1). This phenomenon, known as ocean acidification (OA), has been experimentally shown to impact the biology and ecology of numerous animals and plants2, most notably those that precipitate calcium carbonate skeletons, such as reef-building corals3. Volcanically acidified water at Maug, Commonwealth of the Northern Mariana Islands (CNMI) is equivalent to near-future predictions for what coral reef ecosystems will experience worldwide due to OA. We provide the first chemical and ecological assessment of this unique site and show that acidification-related stress significantly influences the abundance and diversity of coral reef taxa, leading to the often-predicted shift from a coral to an algae-dominated state4, 5. This study provides field evidence that acidification can lead to macroalgae dominance on reefs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of surfactants to improve enzymatic hydrolysis of the macroalgae Sargassum muticum has been investigated. Visible absorption spectroscopy has been used to quantify the solubilization of both polysaccharides and phlorotannins in the hydrolysates.   After total extraction, results showed that Sargassum muticum contained 2.74% (expressed in percent of the dry weight of the algae) of phlorotannins whose 32 % were in the cell wall. This result shows that it is important to access to the parietal phlorotannins. To reach this objective, we chose the enzymatic approach for destructurating the cell wall of the algae. The use of 5% dry weight (DW - 5% by weight of hydrolyzed algae) of an enzymatic mix containing a commercial beta-glucanase, a commercial protease and an alginate lyase extracted from Pseudomonas alginovora led after 3 hours of hydrolysis to the solubilization of 2.43% DW polysaccharides and 0.52% DW phlorotannins. The use of 0.5% volume of the surfactant Triton® X-100 with 10% DW of the enzymatic mix has allowed to reaching the value of 2.63% DW of solubilized phlorotannins, that is 96% of the total phenolic content.   The use of non-ionic surfactant, combined to enzymatic hydrolysis, showed an increased efficiency in disrupting cell wall and solubilizing phlorotannins in Sargassum muticum.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ulva rigida (UR) and Palmaria palmata (PP) were included in farmed Atlantic salmon diets at levels of 0-15% for 19 and 16 weeks, respectively. Quality and shelf-life parameters of salmon fillets stored in modified atmosphere packs (MAP) (60% N2 : 40% CO2) at 4ºC were compared to controls fed astaxanthin. Salmon fillets were enhanced with a yellow/orange colour. Proximate composition, pH and lipid oxidation were unaffected by dietary UR and PP. Salmon fed 5% UR and 5-15% PP did not influence sensory descriptors (texture, odour, oxidation flavour and overall acceptability) of cooked salmon fillets. Pig diets were supplemented with commercial wet- and spray-dried macroalgal (Laminaria digitata) polysaccharide extracts containing laminarin (L, 500 mg/kg feed) and fucoidan (F, 420 mg/kg feed) (L/F-WS, L/F-SD) for 3 weeks and quality and shelf-life parameters of fresh pork steaks (longissimus thoracis et lumborum) stored in MAP (80% O2 : 20% CO2) were examined. Level (450 or 900 mg L and F/kg feed) and duration (3 or 6 weeks) of dietary L/F-WS and mechanisms of antioxidant activities in pork were investigated. L/F-WS reduced (p < 0.05) lipid oxidation and lowered levels of saturated fatty acids in fresh pork after 3 weeks feeding. L/F-SD was added directly to mince pork (0.01 - 0.5%) and quality and shelf-life parameters of fresh pork patties stored in MAP (80% O2 : 20% CO2) were assessed. Direct addition of the L/F-SD increased levels of lipid oxidation and decreased surface redness (a* values) of fresh pork patties. Lipid oxidation was reduced in cooked patties due to the formation of Maillard reaction products. Cooked pork patties containing L/F-SD were subjected to an in vitro digestion and a cellular transwell model to confirm bioaccessibility and uptake of antioxidant compounds. In mechanistic studies, fucoidan demonstrated antiand pro-oxidant activities on muscle lipids and oxymyoglobin, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Irish brown seaweeds have been identified as a potential bio-resource with potentially high specific methane yields. Anaerobic digestion is deemed the most feasible technology due to its commercial viability for handling such wet feedstock. However, the biomethane potential of seaweed is highly dependent on its chemical composition which can vary by species type, cultivation method, and time of harvest. This study aims to investigate and optimize the process for the production of biomethane from Irish brown seaweeds focusing on the key technology bottlenecks including for seaweed characterization, biomethane potential assessment, optimization of long-term anaerobic digestion and suitable pre-treatment technologies to enhance potential gas yields. Laminaria digitata and Ascophyllum nodosum were tested for seasonal variation. From the characterization and batch digestion of L. digitata, August was found to be the optimal month for harvest due to high organic matter content, low level of ash and ultimately highest biomethane yield. The specific methane yield of 53 m3 CH4 t-1 wwt in August was 4.5 times higher than the yield in December (12 m3 CH4 t-1 wwt), with ash content the key factor in seasonal variation. For A. nodosum, the optimal harvest month was October with polyphenol content found to be a more influential factor than ash. The gross energy yields from both species were evaluated in the range of 116-200 GJ ha-1 yr-1. Continuous digestion trials were subsequently designed for S. latissima and L. digitata to optimize the key digestion parameters. Results from mono-digestion and co-digestion with dairy slurry revealed that both seaweeds could be digested at maximum biomethane efficiency to a loading rate of 4 kg VS m-3 d-1. Accumulation of salt in the digesters was a concern for long term digestion and it was reasoned that suitable pretreatment may be required prior to digestion. Various pre-treatments were subsequently tested on L. digitata to enhance the gas yield. It was found that maceration after hot water washing yielded 25% more specific methane and up to 54% salt removal as compared to untreated L. digitata. The experiments undertaken aim to assist in providing a basic guideline for feasible design and operation of seaweed digesters in Ireland.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Long-term environmental sustainability and community acceptance of the shrimp farming industry in Australia requires on-going development of efficient cost-effective effluent treatment options. In this study, we aimed to evaluate the effectiveness of a shrimp farm treatment system containing finfish and vertical artificial substrates (VAS). This was achieved by (1) quantifying the individual and collective effects of grey mullet (Mugil cephalus L.) and VASs on water and sediment quality, and (2) comparing the retention of N in treatment systems with and without the presence of finfish (M. cephalus and the siganid Siganus nebulosus (Quoy & Gaimard)), where light was selectively removed. Artificial substrates were found to significantly improve the settlement of particulate material, regardless of the presence of finfish. Mullet actively resuspended settled solids and reduced the production of nitrate when artificial substrates were absent. However, appreciable nitrification was observed when mullet were present together with artificial substrates. The total quantity of N retained by the mullet was found to be 1.8– 2.4% of the incoming pond effluent N. It was estimated that only 21% of the pond effluent N was available for mullet consumption. When S. nebulosus was added, total finfish N retention increased from 1.8% to 3.9%, N retention by mullet also improved (78±16 to 132±21-mg N day−1 before and after siganid addition respectively). Presence of filamentous macroalgae (Enteromorpha spp.) was found to improve the removal of N from pond effluent relative to treatments where light was excluded. Denitrification was also a significant sink for N (up to 24% N removed). Despite the absence of algal productivity and greater availability of nitrate, denitrification was not higher in treatments where light was excluded. Mullet were found to have no effect on the rates of denitrification but significantly reduced macroalgal growth on the surface of the water. When mullet were absent, excessive macroalgal growth led to reduced dissolved oxygen concentrations and nitrification. This study concludes that the culture of mullet alone in shrimp farm effluent treatment systems does not result in significant retention of N but can contribute to the control of macroalgal biomass. To improve N retention and removal, further work should focus on polyculturing a range of species and also on improving denitrification.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Over the past four decades, the state of Hawaii has developed a system of eleven Marine Life Conservation Districts (MLCDs) to conserve and replenish marine resources around the state. Initially established to provide opportunities for public interaction with the marine environment, these MLCDs vary in size, habitat quality, and management regimes, providing an excellent opportunity to test hypotheses concerning marine protected area (MPA) design and function using multiple discreet sampling units. NOAA/NOS/NCCOS/Center for Coastal Monitoring and Assessment’s Biogeography Team developed digital benthic habitat maps for all MLCD and adjacent habitats. These maps were used to evaluate the efficacy of existing MLCDs for biodiversity conservation and fisheries replenishment, using a spatially explicit stratified random sampling design. Coupling the distribution of habitats and species habitat affinities using GIS technology elucidates species habitat utilization patterns at scales that are commensurate with ecosystem processes and is useful in defining essential fish habitat and biologically relevant boundaries for MPAs. Analysis of benthic cover validated the a priori classification of habitat types and provided justification for using these habitat strata to conduct stratified random sampling and analyses of fish habitat utilization patterns. Results showed that the abundance and distribution of species and assemblages exhibited strong correlations with habitat types. Fish assemblages in the colonized and uncolonized hardbottom habitats were found to be most similar among all of the habitat types. Much of the macroalgae habitat sampled was macroalgae growing on hard substrate, and as a result showed similarities with the other hardbottom assemblages. The fish assemblages in the sand habitats were highly variable but distinct from the other habitat types. Management regime also played an important role in the abundance and distribution of fish assemblages. MLCDs had higher values for most fish assemblage characteristics (e.g. biomass, size, diversity) compared with adjacent fished areas and Fisheries Management Areas (FMAs) across all habitat types. In addition, apex predators and other targeted resources species were more abundant and larger in the MLCDs, illustrating the effectiveness of these closures in conserving fish populations. Habitat complexity, quality, size and level of protection from fishing were important determinates of MLCD effectiveness with respect to their associated fish assemblages. (PDF contains 217 pages)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Executive Summary: Baseline characterization of resources is an essential part of marine protected area (MPA) management and is critical to inform adaptive management. Gray’s Reef National Marine Sanctuary (GRNMS) currently lacks adequate characterization of several key resources as identified in the 2006 Final Management Plan. The objectives of this characterization were to fulfill this need by characterizing the bottom fish, benthic features, marine debris, and the relationships among them for the different bottom types within the sanctuary: ledges, sparse live bottom, rippled sand, and flat sand. Particular attention was given to characterizing the different ledge types, their fish communities, and the marine debris associated with them given the importance of this bottom type to the sanctuary. The characterization has been divided into four sections. Section 1 provides a brief overview of the project, its relevance to sanctuary needs, methods of site selection, and general field procedures. Section 2 provides the survey methods, results, discussion, and recommendations for monitoring specific to the benthic characterization. Section 3 describes the characterization of marine debris. Section 4 is specific to the characterization of bottom fish. Field surveys were conducted during August 2004, May 2005, and August 2005. A total of 179 surveys were completed over ledge bottom (n=92), sparse live bottom (n=51), flat sand (n=20), and rippled sand (n=16). There were three components to each field survey: fish counting, benthic assessment, and quantification of marine debris. All components occurred within a 25 x 4 m belt transect. Two divers performed the transect at each survey site. One diver was responsible for identification of fish species, size, and abundance using a visual survey. The second diver was responsible for characterization of benthic features using five randomly placed 1 m2 quadrats, measuring ledge height and other benthic structures, and quantifying marine debris within the entire transect. GRNMS is composed of four main bottom types: flat sand, rippled sand, sparsely colonized live bottom, and densely colonized live bottom (ledges). Independent evaluation of the thematic accuracy of the GRNMS benthic map produced by Kendall et al. (2005) revealed high overall accuracy (93%). Most discrepancies between map and diver classification occurred during August 2004 and likely can be attributed to several factors, including actual map or diver errors, and changes in the bottom type due to physical forces. The four bottom types have distinct physical and biological characteristics. Flat and rippled sand bottom types were composed primarily of sand substrate and secondarily shell rubble. Flat sand and rippled sand bottom types were characterized by low percent cover (0-2%) of benthic organisms at all sites. Although the sand bottom types were largely devoid of epifauna, numerous burrows indicate the presence of infaunal organisms. Sparse live bottom and ledges were colonized by macroalgae and numerous invertebrates, including coral, gorgonians, sponges, and “other” benthic species (such as tunicates, anemones, and bryozoans). Ledges and sparse live bottom were similar in terms of diversity (H’) given the level of classification used here. However, percent cover of benthic species, with the exception of gorgonians, was significantly greater on ledge than on sparse live bottom. Percent biotic cover at sparse live bottom ranged from 0.7-26.3%, but was greater than 10% at only 7 out of 51 sites. Colonization on sparse live bottom is likely inhibited by shifting sands, as most sites were covered in a layer of sediment up to several centimeters thick. On ledge bottom type, percent cover ranged from 0.42-100%, with the highest percent cover at ledges in the central and south-central region of GRNMS. Biotic cover on ledges is influenced by local ledge characteristics. Cluster analysis of ledge dimensions (total height, undercut height, undercut width) resulted in three main categories of ledges, which were classified as short, medium, and tall. Median total percent cover was 97.6%, 75.1%, and 17.7% on tall, medium, and short ledges, respectively. Total percent cover and cover of macroalgae, sponges, and other organisms was significantly lower on short ledges compared to medium and tall ledges, but did not vary significantly between medium and tall ledges. Like sparse live bottom, short ledges may be susceptible to burial by sand, however the results indicate that ledge height may only be important to a certain threshold. There are likely other factors not considered here that also influence spatial distribution and community structure (e.g., small scale complexity, ocean currents, differential settlement patterns, and biological interactions). GRNMS is a popular site for recreational fishing and boating, and there has been increased concern about the accumulation of debris in the sanctuary and potential effects on sanctuary resources. Understanding the types, abundance, and distribution of debris is essential to improving debris removal and education efforts. Approximately two-thirds of all observed debris items found during the field surveys were fishing gear, and about half of the fishing related debris was monofilament fishing line. Other fishing related debris included leaders and spear gun parts, and non-gear debris included cans, bottles, and rope. The spatial distribution of debris was concentrated in the center of the sanctuary and was most frequently associated with ledges rather than at other bottom types. Several factors may contribute to this observation. Ledges are often targeted by fishermen due to the association of recreationally important fish species with this bottom type. In addition, ledges are structurally complex and are often densely colonized by biota, providing numerous places for debris to become stuck or entangled. Analysis of observed boat locations indicated that higher boat activity, which is an indication of fishing, occurs in the center of the sanctuary. On ledges, the presence and abundance of debris was significantly related to observed boat density and physiographic features including ledge height, ledge area, and percent cover. While it is likely that most fishing related debris originates from boats inside the sanctuary, preliminary investigation of ocean current data indicate that currents may influence the distribution and local retention of more mobile items. Fish communities at GRNMS are closely linked to benthic habitats. A list of species encountered, probability of occurrence, abundance, and biomass by habitat is provided. Species richness, diversity, composition, abundance, and biomass of fish all showed striking differences depending on bottom type with ledges showing the highest values of nearly all metrics. Species membership was distinctly separated by bottom type as well, although very short, sparsely colonized ledges often had a similar community composition to that of sparse live bottom. Analysis of fish communities at ledges alone indicated that species richness and total abundance of fish were positively related to total percent cover of sessile invertebrates and ledge height. Either ledge attribute was sufficient to result in high abundance or species richness of fish. Fish diversity (H`) was negatively correlated with undercut height due to schools of fish species that utilize ledge undercuts such as Pareques species. Concurrent analysis of ledge types and fish communities indicated that there are five distinct combinations of ledge type and species assemblage. These include, 1) short ledges with little or no undercut that lacked many of the undercut associated species except Urophycis earlii ; 2) tall, heavily colonized, deeply undercut ledges typically with Archosargus probatocephalus, Mycteroperca sp., and Pareques sp.; 3) tall, heavily colonized but less undercut with high occurrence of Lagodon rhomboides and Balistes capriscus; 4) short, heavily colonized ledges typically with Centropristis ocyurus, Halichoeres caudalis, and Stenotomus sp.; and 5) tall, heavily colonized, less undercut typically with Archosargus probatocephalus, Caranx crysos and Seriola sp.. Higher levels of boating activity and presumably fishing pressure did not appear to influence species composition or abundance at the community level although individual species appeared affected. These results indicate that merely knowing the basic characteristics of a ledge such as total height, undercut width, and percent cover of sessile invertebrates would allow good prediction of not only species richness and abundance of fish but also which particular fish species assemblages are likely to occur there. Comparisons with prior studies indicate some major changes in the fish community at GRNMS over the last two decades although the causes of the changes are unknown. Species of interest to recreational fishermen including Centropristis striata, Mycteroperca microlepis, and Mycteroperca phenax were examined in relation to bottom features, areas of assumed high versus low fishing pressure, and spatial dispersion. Both Mycteroperca species were found more frequently when undercut height of ledges was taller. They often were found together in small mixed species groups at ledges in the north central and southwest central regions of the sanctuary. Both had lower mode size and proportion of fish above the fishery size limit in heavily fished areas of the sanctuary (i.e. high boat density) despite the presence of better habitat in that region. Black sea bass, C. striata, occurred at 98% of the ledges surveyed and appeared to be evenly distributed throughout the sanctuary. Abundance was best explained by a positive relationship with percent cover of sessile biota but was also negatively related to presence of either Mycteroperca species. This may be due to predation by the Mycteroperca species or avoidance of sites where they are present by C. striata. Suggestions for monitoring bottom features, marine debris, and bottom fish at GRNMS are provided at the end of each chapter. The present assessment has established quantitative baseline characteristics of many of the key resources and use issues at GRNMS. The methods can be used as a model for future assessments to track the trajectory of GRNMS resources. Belt transects are ideally suited to providing efficient and quantitative assessment of bottom features, debris, and fish at GRNMS. The limited visibility, sensitivity of sessile biota, and linear nature of ledge habitats greatly diminish the utility of other sampling techniques. Ledges should receive the bulk of future characterization effort due to their importance to the sanctuary and high variability in physical structure, benthic composition, and fish assemblages. (PDF contains 107 pages.)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Biscayne Bay Benthic Sampling Program was divided into two phases. In Phase I, sixty sampling stations were established in Biscayne Bay (including Dumfoundling Bay and Card Sound) representing diverse habitats. The stations were visited in the wet season (late fall of 1981) and in the dry season (midwinter of 1982). At each station certain abiotic conditions were measured or estimated. These included depth, sources of freshwater inflow and pollution, bottom characteristics, current direction and speed, surface and bottom temperature, salinity and dissolved oxygen, and water clarity was estimated with a secchi disk. Seagrass blades and macroalgae were counted in a 0.1-m2 grid placed so as to best represent the bottom community within a 50-foot radius. Underwater 35-mm photographs were made of the bottom using flash apparatus. Benthic samples were collected using a petite Ponar dredge. These samples were washed through a 5-mm mesh screen, fixed in formalin in the field, and later sorted and identified by experts to a pre-agreed taxonomic level. During the wet season sampling period, a nonquantitative one-meter wide trawl was made of the epibenthic community. These samples were also washed, fixed, sorted and identified. During the dry season sampling period, sediment cores were collected at each station not located on bare rock. These cores were analyzed for sediment size and organic composition by personnel of the University of Miami. Data resulting from the sampling were entered into a computer. These data were subjected to cluster analyses, Shannon-Weaver diversity analysis, multiple regression analysis of variance and covariance, and factor analysis. In Phase II of the program, fifteen stations were selected from among the sixty of Phase I. These stations were sampled quarterly. At each quarter, five Petite Ponar dredge samples were collected from each station. As in Phase I, observations and measurements, including seagrass blade counts, were made at each station. In Phase II, polychaete specimens collected were given to a separate contractor for analysis to the species level. These analyses included mean, standard deviation, coefficient of dispersion, percent of total, and numeric rank for each organism in each station as well as number of species, Shannon-Weaver taxa diversity, and dominance (the compliment of Simpson's Index) for each station. Multiple regression analysis of variance and covariance, and factor analysis were applied to the data to determine effect of abiotic factors measured at each station. (PDF contains 96 pages)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Executive Summary: The Estuary Restoration Act of 2000 (ERA), Title I of the Estuaries and Clean Waters Act of 2000, was created to promote the restoration of habitats along the coast of the United States (including the US protectorates and the Great Lakes). The NOAA National Centers for Coastal Ocean Science was charged with the development of a guidance manual for monitoring plans under this Act. This guidance manual, titled Science-Based Restoration Monitoring of Coastal Habitats, is written in two volumes. It provides technical assistance, outlines necessary steps, and provides useful tools for the development and implementation of sound scientific monitoring of coastal restoration efforts. In addition, this manual offers a means to detect early warnings that the restoration is on track or not, to gauge how well a restoration site is functioning, to coordinate projects and efforts for consistent and successful restoration, and to evaluate the ecological health of specific coastal habitats both before and after project completion (Galatowitsch et al. 1998). The following habitats have been selected for discussion in this manual: water column, rock bottom, coral reefs, oyster reefs, soft bottom, kelp and other macroalgae, rocky shoreline, soft shoreline, submerged aquatic vegetation, marshes, mangrove swamps, deepwater swamps, and riverine forests. The classification of habitats used in this document is generally based on that of Cowardin et al. (1979) in their Classification of Wetlands and Deepwater Habitats of the United States, as called for in the ERA Estuary Habitat Restoration Strategy. This manual is not intended to be a restoration monitoring “cookbook” that provides templates of monitoring plans for specific habitats. The interdependence of a large number of site-specific factors causes habitat types to vary in physical and biological structure within and between regions and geographic locations (Kusler and Kentula 1990). Monitoring approaches used should be tailored to these differences. However, even with the diversity of habitats that may need to be restored and the extreme geographic range across which these habitats occur, there are consistent principles and approaches that form a common basis for effective monitoring. Volume One, titled A Framework for Monitoring Plans under the Estuaries and Clean Waters Act of 2000, begins with definitions and background information. Topics such as restoration, restoration monitoring, estuaries, and the role of socioeconomics in restoration are discussed. In addition, the habitats selected for discussion in this manual are briefly described. (PDF contains 116 pages)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Flower Garden Banks are topographic features on the edge of the continental shelf in the northwest Gulf of Mexico. These banks are approximately 175 km southeast of Galveston, Texas at 28° north latitude and support the northernmost coral reefs on the North American continental shelf. The East and West Flower Garden Banks (EFG and WFG) and Stetson Bank, a smaller sandstone bank approximately 110 km offshore, are managed and protected as the Flower Garden Banks National Marine Sanctuary (FGBNMS). As part of a region-wide initiative to assess coral reef condition, the benthic and fish communities of the EFG and WFG were assessed using the Atlantic and Gulf Rapid Reef Assessment (AGRRA) protocol. The AGRRA survey was conducted during a week-long cruise in August 1999 that was jointly sponsored by the FGBNMS and the Reef Environmental Education Foundation (REEF). A total of 25 coral transects, 132 algal quadrats, 24 fish transects, and 26 Roving Diver (REEF) surveys were conducted. These surveys revealed reefs with high coral cover, dominated by large, healthy corals, little macroalgae, and healthy fish populations. The percent live coral cover was 53.9 and 48.8 at the WFG and EFG, respectively, and the average colony diameter was 93 and 81 cm. Fish diversity was lower than most Caribbean reefs, but large abundances and size of many species reflected the low fishing pressure on the banks. The benthic and fish assemblages at the EFG and WFG were similar. Due to its near pristine conditions, the FGB data will prove to be a valuable component in the AGRRA database and its resulting scale of reef condition for the region. (PDF contains 22 pages.)