960 resultados para Insulin Receptor


Relevância:

70.00% 70.00%

Publicador:

Resumo:

A single bout of aerobic exercise can enhance insulin action, but whether a similar effect occurs after resistance exercise is unknown. Hyperinsulinemic-euglycemic clamps were performed on eight male subjects at rest and after a single bout and three repeated bouts of resistance exercise over 7 days. Skeletal muscle biopsies were taken before and after the clamp and immediately after a single exercise bout. Whole-body insulin action measured by glucose infusion rate decreased (P < 0.05) after a single exercise bout, whereas in response to repeated bouts of resistance exercise, the glucose infusion rate was similar to the rest trial. In skeletal muscle, Akt substrate of 160 kDa (AS160) phosphorylation, an Akt substrate implicated in the regulation of GLUT4 translocation, and its interaction with 14-3-3 was decreased (P < 0.05) only after a single exercise bout. Insulin increased (P < 0.05) phosphorylation of AS160 and its interaction with 14-3-3, but the insulin response was not influenced by resistance exercise. Phosphorylation of insulin receptor substrate-1 and Akt were similar to changes in AS160 phosphorylation after exercise and/or insulin. In conclusion, a single bout of resistance exercise impairs whole-body insulin action. Regulation of AS160 and interaction with 14-3-3 in skeletal muscle are influenced by resistance exercise and insulin but do not fully explain the effect of resistance exercise on whole-body insulin action.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Regular physical activity improves insulin action and is an effective therapy for the treatment and prevention of type 2 diabetes. However, little is known of the mechanisms by which exercise improves insulin action in muscle. These studies investigate the actions of a single bout of exercise and short-term endurance training on insulin signalling. Twenty-four hours following the completion of a single bout of endurance exercise insulin action improved, although greater enhancement of insulin action was demonstrated following the completion of endurance training, implying that cumulative bouts of exercise substantially increase insulin action above that seen from the residual effects of an acute bout of prior exercise. No alteration in the abundance and phosphorylation of proximal members of the insulin-signalling cascade in skeletal muscle, including the insulin receptor and IRS-1 were found. A major finding however, was the significant increase in the serine phosphorylation of a known downstream signalling protein, Akt (1.5 fold, p ≤0.05) following an acute bout of exercise and exercise training. This was matched by the observed increase in protein abundance of SHPTP2 (1.6 fold, p ≤0.05) a protein tyrosine phosphatase, in the cytosolic fraction of skeletal muscle following endurance exercise. These data suggest a small positive role for SHPTP2 on insulin stimulated glucose transport consistent with transgenic mice models. Further studies were aimed at examining the gene expression following a single bout of either resistance or endurance exercise. There were significant transient increases in IRS-2 mRNA concentration in the few hours following a single bout of both endurance and resistance exercise. IRS-2 protein abundance was also observed to significantly increase 24-hours following a single bout of endurance exercise indicating transcriptional regulation of IRS-2 following muscular contraction. One final component of this PhD project was to examine a second novel insulin-signalling pathway via c-Cbl tyrosine phosphorylation that has recently been shown to be essential for insulin stimulated glucose uptake in adipocytes. No evidence was found for the tyrosine phosphorylation of c-Cbl in the skeletal muscle of Zucker rats despite demonstrating significant phosphorylation of the insulin receptor and Akt by insulin treatment and successfully immunoprecipitating c-Cbl protein. Surprisingly, there was a small but significant increase in c-Cbl protein expression following insulin-stimulation, however c-Cbl tyrosine phosphorylation does not appear to be associated with insulin or exercise-mediated glucose transport in skeletal muscle.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Aims/hypothesis : Insulin's rate of entry into skeletal muscle appears to be the rate-limiting step for muscle insulin action and is slowed by insulin resistance. Despite its obvious importance, uncertainty remains as to whether the transport of insulin from plasma to muscle interstitium is a passive diffusional process or a saturable transport process regulated by the insulin receptor. Methods : To address this, here we directly measured the rate of 125I-labelled insulin uptake by rat hindlimb muscle and examined how that is affected by adding unlabelled insulin at high concentrations. We used mono-iodinated [125I]TyrA14-labelled insulin and short (5 min) exposure times, combined with trichloroacetic acid precipitation, to trace intact bioactive insulin. Results : Compared with saline, high concentrations of unlabelled insulin delivered either continuously (insulin clamp) or as a single bolus, significantly raised plasma 125I-labelled insulin, slowed the movement of 125I-labelled insulin from plasma into liver, spleen and heart (p < 0.05, for each) but increased kidney 125I-labelled insulin uptake. High concentrations of unlabelled insulin delivered either continuously (insulin clamp), or as a single bolus, significantly decreased skeletal muscle 125I-labelled insulin clearance (p < 0.01 for each). Increasing muscle perfusion by electrical stimulation did not prevent the inhibitory effect of unlabelled insulin on muscle 125I-labelled insulin clearance. Conclusions/interpretation : These results indicate that insulin's trans-endothelial movement within muscle is a saturable process, which is likely to involve the insulin receptor. Current findings, together with other recent reports, suggest that trans-endothelial insulin transport may be an important site at which muscle insulin action is modulated in clinical and pathological settings.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Hyperglycemia is a defining feature of Type 1 and 2 diabetes. Hyperglycemia also causes insulin resistance, and our group (Kraegen EW, Saha AK, Preston E, Wilks D, Hoy AJ, Cooney GJ, Ruderman NB. Am J Physiol Endocrinol Metab Endocrinol Metab 290: E471–E479, 2006) has recently demonstrated that hyperglycemia generated by glucose infusion results in insulin resistance after 5 h but not after 3 h. The aim of this study was to investigate possible mechanism(s) by which glucose infusion causes insulin resistance in skeletal muscle and in particular to examine whether this was associated with changes in insulin signaling. Hyperglycemia (∼10 mM) was produced in cannulated male Wistar rats for up to 5 h. The glucose infusion rate required to maintain this hyperglycemia progressively lessened over 5 h (by 25%, P < 0.0001 at 5 h) without any alteration in plasma insulin levels consistent with the development of insulin resistance. Muscle glucose uptake in vivo (44%; P < 0.05) and glycogen synthesis rate (52%; P < 0.001) were reduced after 5 h compared with after 3 h of infusion. Despite these changes, there was no decrease in the phosphorylation state of multiple insulin signaling intermediates [insulin receptor, Akt, AS160 (Akt substrate of 160 kDa), glycogen synthase kinase-3β] over the same time course. In isolated soleus strips taken from control or 1- or 5-h glucose-infused animals, insulin-stimulated 2-deoxyglucose transport was similar, but glycogen synthesis was significantly reduced in the 5-h muscle sample (68% vs. 1-h sample; P < 0.001). These results suggest that the reduced muscle glucose uptake in rats after 5 h of acute hyperglycemia is due more to the metabolic effects of excess glycogen storage than to a defect in insulin signaling or glucose transport.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The contribution of mitochondrial dysfunction to insulin resistance is a contentious issue in metabolic research. Recent evidence implicates mitochondrial dysfunction as contributing to multiple forms of insulin resistance. However, some models of mitochondrial dysfunction fail to induce insulin resistance, suggesting greater complexity describes mitochondrial regulation of insulin action. We report that mitochondrial dysfunction is not necessary for cellular models of insulin resistance. However, impairment of mitochondrial function is sufficient for insulin resistance in a cell type-dependent manner, with impaired mitochondrial function inducing insulin resistance in adipocytes, but having no effect, or insulin sensitising effects in hepatocytes. The mechanism of mitochondrial impairment was important in determining the impact on insulin action, but was independent of mitochondrial ROS production. These data can account for opposing findings on this issue and highlight the complexity of mitochondrial regulation of cell type-specific insulin action, which is not described by current reductionist paradigms.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background: Endurance training increases insulin-stimulated muscle glucose transport and leads to improved metabolic control in diabetic patients.Objective: To analyze the effects of endurance training on the early steps of insulin action in muscle of rats. Design: Male rats submitted to daily swimming for 6 weeks were compared with sedentary controls. At the end of the training period, anesthetized animals received an intravenous (i.v.) injection of insulin and had a fragment of their gastrocnemius muscle excised for the experiments.Methods: Associations between insulin receptor, insulin receptor substrates (IRS)-1 and -2 and phosphatidylinositol 3-kinase (PI3-kinase) were analyzed by immunoprecipitation and immunoblotting. Akt-1 serine phosphorylation and specific protein quantification were detected by immunoblotting of total extracts, and IRS-1/IRS-2-associated PI3-kinase activity were determined by thin-layer chromatography.Results: Insulin-induced phosphorylation of IRS-1 and IRS-2 increased respectively by 1.8-fold (P < 0.05) and 1.5-fold (P < 0.05), whereas their association with PI3-kinase increased by 2.3-fold (P < 0.05) and 1.9-fold (P < 0.05) in trained rats as compared with sedentary controls, respectively. The activity of PI3-kinase associated with IRS-1 and IRS-2 increased by 1.8-fold (P < 0.05) and 1.7-fold (P < 0.05) respectively, in trained rats as compared with their untrained counterparts. Serine phosphorylation of Akt-1/PKB increased 1.7-fold (P < 0.05) in trained rats in response to insulin. These findings were accompanied by increased responsiveness to insulin as demonstrated by a reduced area under the curve for insulin during an i.v. glucose tolerance test, by increased glucose disappearance rate during an insulin tolerance test, and by increased expression of glucose transporter-4.Conclusions: the increased responsiveness to insulin induced by chronic exercise in rat skeletal muscle may result, at least in part, from the modulation of the insulin signaling pathway at different molecular levels.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Maternal malnutrition was shown to affect early growth and leads to permanent alterations in insulin secretion and sensitivity of offspring. In addition, epidemiological studies showed an association between low birth weight and glucose intolerance in adult life. To understand these interactions better, we investigated the insulin secretion by isolated islets and the early events related to insulin action in the hind-limb muscle of adult rats fed a diet of 17% protein (control) or 6% protein [low (LP) protein] during fetal life, suckling and after weaning, and in rats receiving 6% protein during fetal life and suckling followed by a 17% protein diet after weaning (recovered). The basal and maximal insulin secretion by islets from rats fed LP diet and the basal release by islets from recovered rats were significantly lower than that of control rats. The dose-response curves to glucose of islets from LP and recovered groups were shifted to the right compared to control islets, with the half-maximal response (EC 50) occurring at 16.9 ± 1.3, 12.4 ± 0.5 and 8.4 ± 0.1 mmol/L, respectively. The levels of insulin receptor, as well as insulin receptor substrate-1 and phosphorylation and the association between insulin receptor substrate-1 and phosphatidylinositol 3-kinase were greater in rats fed a LP diet than in control rats. In recovered rats, these variables were not significantly different from those of the other two groups. These results suggest that glucose homeostasis is maintained in LP and recovered rats by an increased sensitivity to insulin as a result of alterations in the early steps of the insulin signal transduction pathway.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Moderate amounts of alcohol intake have been reported to have a protective effect on the cardiovascular system and this may involve enhanced insulin sensitivity. We established an animal model of increased insulin sensitivity by low ethanol consumption and here we investigated metabolic parameters and molecular mechanisms potentially involved in this phenomenon. For that, Wistar rats have received drinking water either without (control) or with 3% ethanol for four weeks. The effect of ethanol intake on insulin sensitivity was analyzed by insulin resistance index (HOMA-IR), intravenous insulin tolerance test (IVITT) and lipid profile. The role of liver was investigated by the analysis of insulin signaling pathway, GLUT2 gene expression and tissue glycogen content. Rats consuming 3% ethanol showed lower values of HOMA-IR and plasma free fatty acids (FFA) levels and higher hepatic glycogen content and glucose disappearance constant during the IVITT. Neither the phosphorylation of insulin receptor (IR) and insulin receptor substrate-1 (IRS-1), nor its association with phosphatidylinositol-3-kinase (PI3-kinase), was affected by ethanol. However, ethanol consumption enhanced liver IRS-2 and protein kinase B (Akt) phosphorylation (3 times, P < 0.05), which can be involved in the 2-fold increased (P < 0.05) hepatic glycogen content. The GLUT2 protein content was unchanged. Our findings point out that liver plays a role in enhanced insulin sensitivity induced by low ethanol consumption. © 2005 Elsevier Inc. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

It is now commonly accepted that chronic inflammation associated with obesity during aging induces insulin resistance in the liver. In the present study, we investigated whether the improvement in insulin sensitivity and insulin signaling, mediated by acute exercise, could be associated with modulation of protein-tyrosine phosphatase 1B (PTP-1B) in the liver of old rats. Aging rats were subjected to swimming for two 1.5-h long bouts, separated by a 45 min rest period. Sixteen hours after the exercise, the rats were sacrificed and proteins from the insulin signaling pathway were analyzed by immunoblotting. Our results show that the fat mass was increased in old rats. The reduction in glucose disappearance rate (Kitt) observed in aged rats was restored 16 h after exercise. Aging increased the content of PTP-1B and attenuated insulin signaling in the liver of rats, a phenomenon that was reversed by exercise. Aging rats also increased the IRβ/PTP-1B and IRS-1/PTP-1B association in the liver when compared with young rats. Conversely, in the liver of exercised old rats, IRβ/PTP-1B and IRS-1/PTP-1B association was markedly decreased. Moreover, in the hepatic tissue of old rats, the insulin signalling was decreased and PEPCK and G6Pase levels were increased when compared with young rats. Interestingly, 16 h after acute exercise, the PEPCK and G6Pase protein level were decreased in the old exercised group. These results provide new insights into the mechanisms by which exercise restores insulin signalling in liver during aging. © 2013 Moura et al; licensee BioMed Central Ltd.