967 resultados para Immunoglobulin A, Secretory


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inhaled recombinant Secretory Leukocyte Protease Inhibitor (rSLPI) has shown potential for treatment of inflammatory lung conditions. Rapid inactivation of rSLPI by cathepsin L (Cat L) and rapid clearance from the lungs have limited clinical efficacy. Encapsulation of rSLPI within 1,2-Dioleoyl-sn-Glycero-3-[Phospho-L-Serine]:Cholesterol liposomes (DOPS-rSLPI) protects rSLPI against Cat L inactivation in vitro. We aimed to determine the effect of liposomes on rSLPI pharmacokinetics and activity in vitro and after local delivery to the airways in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Excretory secretory products (ESP) of Schistosoma mansoni developing larvae are ideal potential vaccines as such molecules may readily induce host primary immune responses, and local memory immune response effectors that would target, surround, and pursue the larvae while negotiating the lung blood capillaries. We herein characterized the cytokines response ESP, e.g., SG3PDH, 14-3-3-like protein, TPX, and calpain induce in the natural context of infection, and defined the global cytokine profile conducive to effective schistosome larvae killing. Accordingly, spleen cells (SC) taken from naive, and 7-, or 9-day S. mansoni-infected mice were stimulated in vitro with the selected ESP, in a recombinant or multiple antigen peptide (MAP) form, and examined for production of T helper type (Th) 1, Th2, and Th17 cytokines, and the ability to mediate in vitro attrition of lung-stage schistosomula. The study indicated that larval ESP principally elicit Th1 and Th17 type cytokines. Recombinant SG3PDH was the only test ESP to additionally activate SC from S. mansoni-infected BALB/c mice to release higher IL-4 levels than unstimulated SC and mediate significant (P

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chronic lung infection by opportunistic pathogens, such as Pseudomonas aeruginosa and members of the Burkholderia cepacia complex, is a major cause of morbidity and mortality in patients with cystic fibrosis. Outer membrane proteins (OMPs) of gram-negative bacteria are promising vaccine antigen candidates. In this study, we evaluated the immunogenicity, protection, and cross-protection conferred by intranasal vaccination of mice with OMPs from B. multivorans plus the mucosal adjuvant adamantylamide dipeptide (AdDP). Robust mucosal and systemic immune responses were stimulated by vaccination of naive animals with OMPs from B. multivorans and B. cenocepacia plus AdDP. Using a mouse model of chronic pulmonary infection, we observed enhanced clearance of B. multivorans from the lungs of vaccinated animals, which correlated with OMP-specific secretory immunoglobulin A responses. Furthermore, OMP-immunized mice showed rapid resolution of the pulmonary infection with virtually no lung pathology after bacterial challenge with B. multivorans. In addition, we demonstrated that administration of B. multivorans OMP vaccine conferred protection against B. cenocepacia challenge in this mouse infection model, suggesting that OMPs provide cross-protection against the B. cepacia complex. Therefore, we concluded that mucosal immunity to B. multivorans elicited by intranasal vaccination with OMPs plus AdDP could prevent early steps of colonization and infection with B. multivorans and also ameliorate lung tissue damage, while eliciting cross-protection against B. cenocepacia. These results support the notion that therapies leading to increased mucosal immunity in the airways may help patients with cystic fibrosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Members of the Burkholderia cepacia complex can secrete proteases, lipases, and hemolysins. We report in this study the identification of a general secretory pathway present in a B. vietnamiensis (formerly genomovar V) clinical isolate, which is required for the efficient secretion of phospholipase C and hemolysin activities. Southern blot hybridization experiments revealed that this general secretion pathway is highly conserved among the different genomovars of the B. cepacia complex and is homologous to a similar system described in B. pseudomallei. We also show that this pathway appears not to be necessary for intracellular survival of B. vietnamiensis within Acanthamoeba polyphaga.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nematodes Trichinella spiralis and Trichinella pseudospiralis are both intracellular parasites of skeletal muscle cells and induce profound alterations in the host cell resulting in a re-alignment of muscle-specific gene expression. While T. spiralis induces the production of a collagen capsule surrounding the host-parasite complex, T. pseudospiralis exists in a non-encapsulated form and is also characterised by suppression of the host inflammatory response in the muscle. These observed differences between the two species are thought to be due to variation in the proteins excreted or secreted (ES proteins) by the muscle larva. In this study, we use a global proteomics approach to compare the ES protein profiles from both species and to identify individual T. pseudospiralis proteins that complement earlier studies with T. spiralis. Following two-dimensional gel electrophoresis, tandem mass spectrometry was used to identify the peptide spots. In many cases identification was aided by the determination of partial peptide sequence from selected mass ions. The T. pseudospiralis spots identified included the major secreted glycoproteins and the secreted 5'-nucleotidase. Furthermore, two major groups of T. spiralis-specific proteins and several T. pseudospiralis-specific proteins were identified. Our results demonstrate the value of proteomics as a tool for the identification of ES proteins that are differentially expressed between Trichinella species and as an aid to identifying key parasite proteins that are involved in the host-parasite interaction. The value of this approach will be further enhanced by data arising out the current T. spiralis genome sequencing project.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trichinella spiralis is an intracellular nematode parasite of mammalian skeletal muscle. Infection of the muscle cell leads to the formation of a host-parasite complex that results in profound alterations to the host cell and a re-alignment of muscle-specific gene expression. The role of parasite excretory-secretory (ES) proteins in mediating these effects is currently unknown, largely due to the difficulty in identifying and assigning function to individual proteins. In this study, a global proteomics approach was used to analyse the ES proteins from T. spiralis muscle larvae. Following 2-DE of ES proteins,MALDI-TOF-MS and LC-MS/MS were used to identify the peptide spots. Specific Trichinella EST databases were assembled and used to analyse the data. Despite the current absence of a Trichinella genome-sequencing project, 43 out of 52 protein spots analysed were identified and included the major secreted glycoproteins. Other novel proteins were identified from matches with sequences in the T. spiralis database. Our results demonstrate the value of proteomics as a tool for the identification of Trichinella ES proteins and in the study of the molecular mechanism underpinning the formation of the host-parasite complex during Trichinella infections.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Infection of mammalian skeletal muscle with the intracellular parasite Trichinella spiralis results in profound alterations in the host cell and a realignment of host cell gene expression. The role of parasite excretory/secretory (E/S) products in mediating these effects is unknown, largely due to the difficulty in identifying and assigning function to individual proteins. In this study, we have used two-dimensional electrophoresis to analyse the profile of muscle larva excreted/secreted proteins and have coupled this to protein identification using MALDI-TOF mass spectrometry. Interpretation of the peptide mass fingerprint data has relied primarily on the interrogation of a custom-made Trichinella EST database and the NemaGene cluster database for T. spiralis. Our results suggest that this proteomic approach is a useful tool to study protein expression in Trichinella spp. and will contribute to the identification of excreted/secreted proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chronic lung diseases such as cystic fibrosis and emphysema are characterized by a protease burden, an infective process and a dominant proinflammatory profile. Secretory leucoprotease inhibitor (SLPI) is a prominent innate immune protein of the respiratory tract, possessing serine protease inhibitor activity, antibacterial activity, and anti-inflammatory/immunomodulatory activity. In the course of this review, the authors highlight the findings from a range of studies that illustrate the multiple functions of SLPI and its role in the resolution of the immune response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chronic lung disease is one of the most common causes of death and disability worldwide. This group of diseases is characterized by a protease burden, an infective process and a dominant pro-inflammatory profile. While SLPI (secretory leucoprotease inhibitor) was initially identified as a serine protease inhibitor, it has since been shown that SLPI possesses other properties distinct from those associated with its antiprotease capabilities that play an important role in protecting the host from infection and injury. In the course of this review, we will highlight the findings from a range of studies that illustrate the multiple functions of SLPI and its role in the resolution of the immune response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Secretory leucoprotease inhibitor (SLPI) is a nonglycosylated protein produced by epithelial cells. In addition to its antiprotease activity, SLPI has been shown to exhibit antiinflammatory properties, including down-regulation of tumor necrosis factor alpha expression by lipopolysaccharide (LPS) in macrophages and inhibition of nuclear factor (NF)-kappaB activation in a rat model of acute lung injury. We have previously shown that SLPI can inhibit LPS-induced NF-kappaB activation in monocytic cells by inhibiting degradation of IkappaBalpha without affecting the LPS-induced phosphorylation and ubiquitination of IkappaBalpha. Here, we present evidence to show that upon incubation with peripheral blood monocytes (PBMs) and the U937 monocytic cell line, SLPI enters the cells, becoming rapidly localized to the cytoplasm and nucleus, and affects NF-kappaB activation by binding directly to NF-kappaB binding sites in a site-specific manner. SLPI can also prevent p65 interaction with the NF-kappaB consensus region at concentrations commensurate with the physiological nuclear levels of SLPI and p65. We also demonstrate the presence of SLPI in nuclear fractions of PBMs and alveolar macrophages from individuals with cystic fibrosis and community-acquired pneumonia. Therefore, SLPI inhibition of NF-kappaB activation is mediated, in part, by competitive binding to the NF-kappaB consensus-binding site.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Secretory factors that drive cancer progression are attractive immunotherapeutic targets. We used a whole-genome data-mining approach on multiple cohorts of breast tumours annotated for clinical outcomes to discover such factors. We identified Serine protease inhibitor Kazal-type 1 (SPINK1) to be associated with poor survival in estrogen receptor-positive (ER+) cases. Immunohistochemistry showed that SPINK1 was absent in normal breast, present in early and advanced tumours, and its expression correlated with poor survival in ER+ tumours. In ER- cases, the prognostic effect did not reach statistical significance. Forced expression and/or exposure to recombinant SPINK1 induced invasiveness without affecting cell proliferation. However, down-regulation of SPINK1 resulted in cell death. Further, SPINK1 overexpressing cells were resistant to drug-induced apoptosis due to reduced caspase-3 levels and high expression of Bcl2 and phospho-Bcl2 proteins. Intriguingly, these anti-apoptotic effects of SPINK1 were abrogated by mutations of its protease inhibition domain. Thus, SPINK1 affects multiple aggressive properties in breast cancer: survival, invasiveness and chemoresistance. Because SPINK1 effects are abrogated by neutralizing antibodies, we suggest that SPINK1 is a viable potential therapeutic target in breast cancer.