964 resultados para Granulation tissue, microenvironment, bone formation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The molecular mechanisms controlling bone extracellular matrix (ECM) deposition by differentiated osteoblasts in postnatal life, called hereafter bone formation, are unknown. This contrasts with the growing knowledge about the genetic control of osteoblast differentiation during embryonic development. Cbfa1, a transcriptional activator of osteoblast differentiation during embryonic development, is also expressed in differentiated osteoblasts postnatally. The perinatal lethality occurring in Cbfa1-deficient mice has prevented so far the study of its function after birth. To determine if Cbfa1 plays a role during bone formation we generated transgenic mice overexpressing Cbfa1 DNA-binding domain (DeltaCbfa1) in differentiated osteoblasts only postnatally. DeltaCbfa1 has a higher affinity for DNA than Cbfa1 itself, has no transcriptional activity on its own, and can act in a dominant-negative manner in DNA cotransfection assays. DeltaCbfa1-expressing mice have a normal skeleton at birth but develop an osteopenic phenotype thereafter. Dynamic histomorphometric studies show that this phenotype is caused by a major decrease in the bone formation rate in the face of a normal number of osteoblasts thus indicating that once osteoblasts are differentiated Cbfa1 regulates their function. Molecular analyses reveal that the expression of the genes expressed in osteoblasts and encoding bone ECM proteins is nearly abolished in transgenic mice, and ex vivo assays demonstrated that DeltaCbfa1-expressing osteoblasts were less active than wild-type osteoblasts. We also show that Cbfa1 regulates positively the activity of its own promoter, which has the highest affinity Cbfa1-binding sites characterized. This study demonstrates that beyond its differentiation function Cbfa1 is the first transcriptional activator of bone formation identified to date and illustrates that developmentally important genes control physiological processes postnatally.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nitric oxide (NO) is a mediator involved in bone regeneration. We therefore examined the effect of the novel NO donor, S-nitroso human serum albumin (S-NO-HSA) on bone formation in a rabbit calvaria augmentation model. Circular grooves (8 mm diameter, two per animal) were created by a trephine drill in the cortical bone of 40 rabbits and titanium caps were placed on the rabbit calvaria bone filled with a collagen sponge soaked with either 100 μL S-NO-HSA (5%, 20%) or human albumin (5%, 20%). After 4 weeks the titanium hemispheres were subjected to histological and histomorphometric analysis. Bone formation and the volume of the residual collagen sponge were evaluated. S-NO-HSA treatment groups had a significantly higher volume of newly formed bone underneath the titanium hemispheres compared to the albumin control groups (5%: 15.5 ± 4.0% versus 10.6 ± 2.9%; P < 0.05; 20%: 14.0 ± 4.6% versus 6.0 ± 3.8%; P < 0.01). The volume of residual collagen sponge was also significantly lower in the S-NO-HSA groups compared to the control groups (5%: 0.4 ± 0.5% versus 2.6 ± 2.4%; P < 0.05 and 20%: 1.5 ± 2.7% versus 13.0 ± 18.7%; P < 0.01). This study demonstrates for the first time that S-NO-HSA promotes bone formation by slow NO release. Additionally, S-NO-HSA increases collagen sponge degradation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bone mass is maintained constant in vertebrates through bone remodeling (BR). BR is characterized by osteoclastic resorption of preexisting bone followed by de novo bone formation by osteoblasts. This sequence of events and the fact that bone mass remains constant in physiological situation lead to the assumption that resorption and formation are regulated by each other during BR. Recent evidence shows that cells of the osteoblastic lineage are involved in osteoclast differentiation. However, the existence of a functional link between the two activities, formation and resorption, has never been shown in vivo. To define the role of bone formation in the control of bone resorption, we generated an inducible osteoblast ablation mouse model. These mice developed a reversible osteopenia. Functional analyses showed that in the absence of bone formation, bone resorption continued to occur normally, leading to an osteoporosis of controllable severity, whose appearance could be prevented by an antiresorptive agent. This study establishes that bone formation and/or bone mass do not control the extent of bone resorption in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Parathyroid hormone-related peptide (PTHrP) was initially identified as a product of malignant tumors that mediates paraneoplastic hypercalcemia. It is now known that the parathyroid hormone (PTH) and PTHrP genes are evolutionarily related and that the products of these two genes share a common receptor, the PTH/PTHrP receptor. PTHrP and the PTH/PTHrP receptor are widely expressed in both adult and fetal tissues, and recent gene-targeting and disruption experiments have implicated PTHrP as a developmental regulatory molecule. Apparent PTHrP functions include the regulation of endochondral bone development, of hair follicle formation, and of branching morphogenesis in the breast. Herein, we report that overexpression of PTHrP in chondrocytes using the mouse type II collagen promoter induces a novel form of chondrodysplasia characterized by short-limbed dwarfism and a delay in endochondral ossification. This features a delay in chondrocyte differentiation and in bone collar formation and is sufficiently marked that the mice are born with a cartilaginous endochondral skeleton. In addition to the delay, chondrocytes in the transgenic mice initially become hypertrophic at the periphery of the developing long bones rather than in the middle, leading to a seeming reversal in the pattern of chondrocyte differentiation and ossification. By 7 weeks, the delays in chondrocyte differentiation and ossification have largely corrected, leaving foreshortened and misshapen but histologically near-normal bones. These findings confirm a role for PTHrP as an inhibitor of the program of chondrocyte differentiation. PTHrP may function in this regard to maintain the stepwise differentiation of chondrocytes that initiates endochondral ossification in the midsection of endochondral bones early in development and that also permits linear growth at the growth plate later in development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This report explores the mechanism of spontaneous closure of full-thickness skin wounds. The domestic pig, often used as a human analogue for skin wound repair studies, closes these wounds with kinetics similar to those in the guinea pig (mobile skin), even though the porcine dermis on the back is thick and nearly immobile. In the domestic pig, as in the guinea pig, daily full-thickness excisions of the central granulation tissue up to but not including the wound edges in both back and flank wounds do not alter the rate or completeness of wound closure or the final pattern of the scar. A purse-string mechanism of closure was precluded by showing that surgical interruption of wound edge continuity does not alter closure kinetics or wound shape. We conclude that "tightness" of skin is not a key factor nor is the central granulation tissue required for normal wound closure. These data imply that in vitro models such as contraction of isolated granulation tissue or of the cell-populated collagen lattice may not be relevant for understanding the cell biology of in vivo wound closure. Implications for the mechanism for wound closure are discussed.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Osteophytes form through the process of chondroid metamorphosis of fibrous tissue followed by endochondral ossification. Osteophytes have been found to consist of three different mesenchymal tissue regions including endochondral bone formation within cartilage residues, intra-membranous bone formation within fibrous tissue and bone formation within bone marrow spaces. All these features provide evidence of mesenchymal stem cells (MSC) involvement in osteophyte formation; nevertheless, it remains to be characterised. MSC from numerous mesenchymal tissues have been isolated but bone marrow remains the “ideal” due to the ease of ex vivo expansion and multilineage potential. However, the bone marrow stroma has a relatively low number of MSC, something that necessitates the need for long-term culture and extensive population doublings in order to obtain a sufficient number of cells for therapeutic applications. MSC in vitro have limited proliferative capacity and extensive passaging compromises differentiation potential. To overcome this barrier, tissue derived MSC are of strong interest for extensive study and characterisation, with a focus on their potential application in therapeutic tissue regeneration. To date, no MSC type cell has been isolated from osteophyte tissue, despite this tissue exhibiting all the hallmark features of a regenerative tissue. Therefore, this study aimed to isolate and characterise cells from osteophyte tissues in relation to their phenotype, differentiation potential, immuno-modulatory properties, proliferation, cellular ageing, longevity and chondrogenesis in in vitro defect model in comparison to patient matched bone marrow stromal cells (bMSC). Osteophyte derived cells were isolated from osteophyte tissue samples collected during knee replacement surgery. These cells were characterised by the expression of cell surface antigens, differentiation potential into mesenchymal lineages, growth kinetics and modulation of allo-immune responses. Multipotential stem cells were identified from all osteophyte samples namely osteophyte derived mesenchymal stem cells (oMSC). Extensively expanded cell cultures (passage 4 and 9 respectively) were used to confirm cytogenetic stability and study signs of cellular aging, telomere length and telomerase activity. Cultured cells at passage 4 were used to determine 84 pathway focused stem cell related gene expression profile. Micro mass pellets were cultured in chondrogenic differentiation media for 21 days for phenotypic and chondrogenic related gene expression. Secondly, cell pellets differentiated overnight were placed into articular cartilage defects and cultured for further 21 days in control medium and chondrogenic medium to study chondrogenesis and cell behaviour. The surface antigen expression of oMSC was consistent with that of mesenchymal stem cells, such as lacking the haematopoietic and common leukocyte markers (CD34, CD45) while expressing those related to adhesion (CD29, CD166, CD44) and stem cells (CD90, CD105, CD73). The proliferation capacity of oMSC in culture was superior to that of bMSC, and they readily differentiated into tissues of the mesenchymal lineages. oMSC also demonstrated the ability to suppress allogeneic T-cell proliferation, which was associated with the expression of tryptophan degrading enzyme indoleamine 2,3 dioxygenase (IDO). Cellular aging was more prominent in late passage bMSC than in oMSC. oMSC had longer telomere length in late passages compared with bMSC, although there was no significant difference in telomere lengths in the early passages in either cell type. Telomerase activity was detectable only in early passage oMSC and not in bMSC. In osteophyte tissues telomerase positive cells were found to be located peri vascularly and were Stro-1 positive. Eighty-four pathway-focused genes were investigated and only five genes (APC, CCND2, GJB2, NCAM and BMP2) were differentially expressed between bMSC and oMSC. Chondrogenically induced micro mass pellets of oMSC showed higher staining intensity for proteoglycans, aggrecan and collagen II. Differential expression of chondrogenic related genes showed up regulation of Aggrecan and Sox 9 in oMSC and collagen II in bMSC. The in vitro defect models of oMSC in control medium showed rounded and aggregated cells staining positively for proteoglycan and presence of some extracellular matrix. In contrast, defects with bMSC showed fragmentation and loss of cells, fibroblast-like cell morphology staining positively for proteoglycans. For defects maintained in chondrogenic medium, rounded, aggregated and proteoglycan positive cells were found in both oMSC and bMSC cultures. Extracellular matrix and cellular integration into newly formed matrix was evident only in oMSC defects. For analysis of chondrocyte hypertrophy, strong expression of type X collagen could be noticed in the pellet cultures and transplanted bMSC. In summary, this study demonstrated that osteophyte derived cells had similar properties to mesenchymal stem cells in the expression of antigen phenotype, differential potential and suppression of allo-immune response. Furthermore, when compared to bMSC, oMSC maintained a higher proliferative capacity due to a retained level of telomerase activity in vitro, which may account for the relatively longer telomeres delaying growth arrest by replicative senescence compared with bMSC. oMSC behaviour in defects supported chondrogenesis which implies that cells derived from regenerative tissue can be an alternative source of stem cells and have a potential clinical application for therapeutic stem cell based tissue regeneration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O efeito cicatrizante do hidrocarboneto alifático foi pesquisado através da aplicação diária em feridas cutâneas, cirurgicamente provocadas, em roedores da espécie Calomys callosus. As feridas dos animais foram analisadas sob os aspectos macroscópicos e histológicos transcorridos 3, 7, 14 e 21 dias de tratamento e comparado com o uso de solução fisiológica a 0,9%. O hidrocarboneto alifático antecipou a cicatrização ao diminuir a umidade, aumentar a formação do tecido de granulação e a neovascularização, conduzindo à reepitelização.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The first step in bone healing is forming a blood clot at injured bones. During bone implantation, biomaterials unavoidably come into direct contact with blood, leading to a blood clot formation on its surface prior to bone regeneration. Despite both situations being similar in forming a blood clot at the defect site, most research in bone tissue engineering virtually ignores the important role of a blood clot in supporting healing. Dental implantology has long demonstrated that the fibrin structure and cellular content of a peri-implant clot can greatly affect osteoconduction and de novo bone formation on implant surfaces. This paper reviews the formation of a blood clot during bone healing in related to the use of platelet-rich plasma (PRP) gels. It is implicated that PRP gels are dramatically altered from a normal clot in healing, resulting conflicting effect on bone regeneration. These results indicate that the effect of clots on bone regeneration depends on how the clots are formed. Factors that influence blood clot structure and properties in related to bone healing are also highlighted. Such knowledge is essential for developing strategies to optimally control blood clot formation, which ultimately alter the healing microenvironment of bone. Of particular interest are modification of surface chemistry of biomaterials, which displays functional groups at varied composition for the purpose of tailoring blood coagulation activation, resultant clot fibrin architecture, rigidity, susceptibility to lysis, and growth factor release. This opens new scope of in situ blood clot modification as a promising approach in accelerating and controlling bone regeneration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: Regeneration of osseous defects by tissue-engineering or cell delivery approach provides a novel means of treatment utilizing cell biology, materials sciences, and molecular biology. The concept of in vitro explanted mesenchymal stem cells (MSCs) with an ability to induce new bone formation has been demonstrated in some small animal models. However, contradictory results have been reported regarding the regenerative capacity of MSCs after ex vivo expansion due to the lack of the understanding of microenvironment for MSC differentiation in vivo. ----- ----- Methods: In our laboratory tissue-derived and bone marrow-derived MSCs have been investigated in their osteogenesis. Cell morphology and proliferation were studied by microscopy, confocal microscopy, FACS and cell counting. Cell differentiation and matrix formation were analysed by matrix staining, quantitative PCR, and immunohistochemistry. A SCID skull defect model was used for cell transplantation studies.----- ----- Results: It was noted that tissue-derived and bone marrow-derived MSCs showed similar characteristics in cell surface marker expression, mesenchymal lineage differentiation potential, and cell population doubling. MSCs from both sources could initiate new bone formation in bone defects after delivery into a critical size defects. The bone forming cells were from both transplanted cells and endogenous cells from the host. Interestingly, the majority of in vitro osteogenic differentiated cells did not form new bone directly even though mineralized matrix was synthesized in vitro by MSCs. Furthermore, no new bone formation was detected when MSCs were transplanted subcutaneously.----- ----- Conclusion: This study unveiled the limitations of MSC delivery in bone regeneration and proposed that in vivo microenvironment needs to be optimized for MSC delivery in osteogenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

and non-union of bony fractures has been proposed since 1966, little has been known about the effect of HBOT on bone marrow stem cells (BMSC). The aim of this study is to investigate the effect of HBO treatment on osteogenetic differentiation of BMSC and potential application in bone tissue engineering. Adhesive stromal cells harvested from bone marrow were characterized by mesenchymal differentiation potential, cell surface markers and their proliferation capacity. Mesenchymal stem cells, which demonstrated osteogenic, chondrogenic and adipogenic differentiation potential and expressed positively for CD 29, CD 44, CD 73, CD 90, CD 105, CD 166 and negatively for CD34 and CD 45, were selected and treated in a laboratory-scale HBO chamber using different oxygen pressures and exposure times. No obvious effect of HBO treatment on BMSC proliferation was noticed. However, cytotoxic effects of HBO were considerably less pronounced when cells were cultured in medium supplemented with 10% FBS in comparison to medium supplemented with 2% FCS, as was evaluated by WST-1 assay. Under HBO treatment, bone nodules were formed in three days, which was clearly revealed by Von Kossa staining. In contrasts, without HBO treatment, bone nodules were not detected until 9-12 days using the same inducing culture media. Calcium deposition was also significantly increased after three days of HBO treatments compared to no HBO treatment. In addition it was also found that oxygen played a direct role in the enhancement of BMSC osteogenic differentiation, which was independent of the effect of air pressure.