998 resultados para Gemstone Team B3


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Over 70% of nosocomial infections in the United States are resistant to one or more traditional antibiotics, necessitating research for alternative treatment options. This study aims to chelate gallium (Ga) onto a bacterial siderophore, desferrioxamine (DFO), to retard bacterial growth. By exploiting natural bacterial pathways, metal-siderophore treatments are hypothesized to circumvent traditional resistance mechanisms. Additionally, the GaDFO complex will be tested against several bacterial species to determine the specificity of DFO uptake. This research aims to prove the feasibility of siderophore piracy as an alternative to antibiotics. In showing the feasibility of siderophore piracy mechanisms, this research will enable the development of future avenues for protecting against resistant nosocomial infections.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A solar cell relies on its ability to turn photons into current. Because short wavelength photons are typically absorbed near the top surface of a cell, the generated charge carriers recombine before being collected. But when a layer of quantum dots (nanoscale semiconductor particles) is placed on top of the cell, it absorbs short wavelength photons and emits them into the cell at longer wavelengths, which enables more efficient carrier collection. However, the resulting power conversion efficiency of the system depends critically on the quantum dot luminescence efficiency – the nature of this relationship was previously unknown. Our calculations suggest that a quantum dot layer must have high luminescence efficiency (at least 80%) to improve the current output of existing photovoltaic (PV) cells; otherwise, it may worsen the cell’s efficiency. Our quantum dot layer (using quantum dots with over 85% quantum yield) slightly reduced the efficiency of our PV cells. We observed a decrease in short circuit current of a commercial-grade cell from 0.1977 A to 0.1826 A, a 7.6% drop, suggesting that improved optical coupling from the quantum dot emission into the solar cell is needed. With better optical coupling, we predict current enhancements between ~6% and ~8% for a solar cell that already has an antireflection coating. Such improvements could have important commercial impacts if the coating could be deployed in a scalable fashion.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Mongolian gazelle, Procapra gutturosa, resides in the immense and dynamic ecosystem of the Eastern Mongolian Steppe. The Mongolian Steppe ecosystem dynamics, including vegetation availability, change rapidly and dramatically due to unpredictable precipitation patterns. The Mongolian gazelle has adapted to this unpredictable vegetation availability by making long range nomadic movements. However, predicting these movements is challenging and requires a complex model. An accurate model of gazelle movements is needed, as rampant habitat fragmentation due to human development projects - which inhibit gazelles from obtaining essential resources - increasingly threaten this nomadic species. We created a novel model using an Individual-based Neural Network Genetic Algorithm (ING) to predict how habitat fragmentation affects animal movement, using the Mongolian Steppe as a model ecosystem. We used Global Positioning System (GPS) collar data from real gazelles to “train” our model to emulate characteristic patterns of Mongolian gazelle movement behavior. These patterns are: preferred vegetation resources (NDVI), displacement over certain time lags, and proximity to human areas. With this trained model, we then explored how potential scenarios of habitat fragmentation may affect gazelle movement. This model can be used to predict how fragmentation of the Mongolian Steppe may affect the Mongolian gazelle. In addition, this model is novel in that it can be applied to other ecological scenarios, since we designed it in modules that are easily interchanged.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Team NAVIGATE aims to create a robust, portable navigational aid for the blind. Our prototype uses depth data from the Microsoft Kinect to perform realtime obstacle avoidance in unfamiliar indoor environments. The device augments the white cane by performing two signi cant functions: detecting overhanging objects and identifying stairs. Based on interviews with blind individuals, we found a combined audio and haptic feedback system best for communicating environmental information. Our prototype uses vibration motors to indicate the presence of an obstacle and an auditory command to alert the user to stairs ahead. Through multiple trials with sighted and blind participants, the device was successful in detecting overhanging objects and approaching stairs. The device increased user competency and adaptability across all trials.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Self-regulation of blood glucose in diabetics via insulin administration introduces the risk of hypoglycemia. Previous studies have shown hypoglycemia damages the dentate gyrus, an area of the hippocampus associated with anxiety- and depressive-like behavior. To date, only depressive-like behaviors have been observed following moderate hypoglycemia. This study sought to examine whether acute moderate hypoglycemia induces both behaviors due to high clinical comorbidity. One episode of moderate hypoglycemia was induced in a male Sprague-Dawley rat. Twenty-four hours later, hippocampal function was evaluated via the elevated plus maze and the forced swim test to assess anxiety-like and depressive-like behavior. Results, though not statistically significant, suggested that acute moderate hypoglycemia may increase anxiety- and depressive-like behavior. These findings may elucidate hypoglycemia-related behavioral changes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Human papillomavirus (HPV) is the leading cause of cervical cancer and the most prevalent sexually transmitted disease worldwide. HPV vaccines require a multi-dose regimen to provide immunity, contributing to low patient compliance. We addressed this problem by formulating biodegradable poly(D,L-lactic-co-glycolic acid) (PLGA) microparticles and assessing their viability for use in controlled-release vaccines. We hypothesized that we could alter fabrication parameters to produce 1-10 μm microparticles in order to encapsulate ovalbumin (OVA) and HPV virus-like particles (VLPs). Microparticles were fabricated using a double emulsion method and used to elicit an immune response in JAWSII cells. Our results contribute to knowledge of vaccine delivery mechanisms and controlled-release technology, and could contribute to the creation of a viable controlled-release HPV vaccine.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hemorrhage is the leading cause of preventable death after a traumatic injury. Commercial hemostatic agents exist, but have various disadvantages including high cost, short shelf-lives, or secondary tissue damage. Polymer hydrogels provide a promising platform for the use of both biological and mechanical mechanisms to accelerate natural hemostasis and control hemorrhage. The goal of this work was to develop hydrogel particles composed of chitosan and alginate and loaded with zeolite in order to stop blood loss by targeting multiple hemostatic mechanisms. Several ii particle compositions were synthesized and then characterized through swelling studies, particle sizing, Scanning Electron Microscopy (SEM), and Fourier Transform Infrared Spectroscopy (FTIR). The in vitro interactions of the particles were evaluated through coagulation, degradation, platelet aggregation, and cytotoxicity studies. The results indicate that 4% alginate, 1% chitosan, 4% zeolite-loaded hydrogel beads can significantly reduce time to coagulation and increase platelet aggregation in vitro. Future research can look into the efficacy of these particles in vivo.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Intersex in largemouth bass (Micropterus salmoides) has been correlated with regional anthropogenic activity, but has not been causally linked to environmental factors. Four groups of hatchery-reared largemouth bass (LMB) and fathead minnows (FHM) of varying ages and sex were exposed to aqueous poultry litter mixtures, 17β- estradiol (E2), and controls. Water samples were analyzed for estrogens through liquid chromatography tandem mass spectrometry and estrogenicity through the bioluminescent yeast estrogen screen assay. Fish plasma was analyzed for the egg yolk protein vitellogenin (Vtg) using enzyme–linked immunosorbent assay and gonad tissue was examined histologically for enumeration of testicular oocytes (TO). Water chemistry revealed typical E2 conversion to Estrone with subsequent decay over the exposure periods. A modest prevalence of TO (9.4%) was detected with no apparent treatment effect. While significant Vtg induction was found in E2 exposed FHM, minimal Vtg induction was found in male LMB. Despite field findings of intersex in male LMB, this species may be poorly suited for laboratory investigations into endocrine disruption.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Current methods for large-scale wind collection are unviable in urban areas. In order to investigate the feasibility of generating power from winds in these environments, we sought to optimize placements of small vertical-axis wind turbines in areas of artificially-generated winds. We explored both vehicular transportation and architecture as sources of artificial wind, using a combination of anemometer arrays, global positioning system (GPS), and weather report data. We determined that transportation-generated winds were not significant enough for turbine implementation. In addition, safety and administrative concerns restricted the implementation of said wind turbines along roadways for transportation-generated wind collection. Wind measurements from our architecture collection were applied in models that can help predict other similar areas with artificial wind, as well as the optimal placement of a wind turbine in those areas.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We investigate the application of time-reversed electromagnetic wave propagation to transmit energy in a wireless power transmission system. “Time reversal” is a signal focusing method that exploits the time reversal invariance of the lossless wave equation to direct signals onto a single point inside a complex scattering environment. In this work, we explore the properties of time reversed microwave pulses in a low-loss ray-chaotic chamber. We measure the spatial profile of the collapsing wavefront around the target antenna, and demonstrate that time reversal can be used to transfer energy to a receiver in motion. We demonstrate how nonlinear elements can be controlled to selectively focus on one target out of a group. Finally, we discuss the design of a rectenna for use in a time reversal system. We explore the implication of these results, and how they may be applied in future technologies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

When teaching students with visual impairments educators generally rely on tactile tools to depict visual mathematical topics. Tactile media, such as embossed paper and simple manipulable materials, are typically used to convey graphical information. Although these tools are easy to use and relatively inexpensive, they are solely tactile and are not modifiable. Dynamic and interactive technologies such as pin matrices and haptic pens are also commercially available, but tend to be more expensive and less intuitive. This study aims to bridge the gap between easy-to-use tactile tools and dynamic, interactive technologies in order to facilitate the haptic learning of mathematical concepts. We developed an haptic assistive device using a Tanvas electrostatic touchscreen that provides the user with multimodal (haptic, auditory, and visual) output. Three methodological steps comprise this research: 1) a systematic literature review of the state of the art in the design and testing of tactile and haptic assistive devices, 2) a user-centered system design, and 3) testing of the system’s effectiveness via a usability study. The electrostatic touchscreen exhibits promise as an assistive device for displaying visual mathematical elements via the haptic modality.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Drowsy driving impairs motorists’ ability to operate vehicles safely, endangering both the drivers and other people on the road. The purpose of the project is to find the most effective wearable device to detect drowsiness. Existing research has demonstrated several options for drowsiness detection, such as electroencephalogram (EEG) brain wave measurement, eye tracking, head motions, and lane deviations. However, there are no detailed trade-off analyses for the cost, accuracy, detection time, and ergonomics of these methods. We chose to use two different EEG headsets: NeuroSky Mindwave Mobile (single-electrode) and Emotiv EPOC (14- electrode). We also tested a camera and gyroscope-accelerometer device. We can successfully determine drowsiness after five minutes of training using both single and multi-electrode EEGs. Devices were evaluated using the following criteria: time needed to achieve accurate reading, accuracy of prediction, rate of false positives vs. false negatives, and ergonomics and portability. This research will help improve detection devices, and reduce the number of future accidents due to drowsy driving.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Our research sought to address the extent to which the northern snakehead (Channa argus), an invasive fish species, represents a threat to the Potomac River ecosystem. The first goal of our research was to survey the perceptions and opinions of recreational anglers on the effects of the snakehead population in the Potomac River ecosystem. To determine angler perceptions, we created and administered 113 surveys from June – September 2014 at recreational boat ramps along the Potomac River. Our surveys were designed to expand information collected during previous surveys conducted by the U.S. Fish and Wildlife Service. Our results indicated recreational anglers perceive that abundances and catch rates of target species, specifically largemouth bass, have declined since snakehead became established in the river. The second goal of our research was to determine the genetic diversity and potential of the snakehead population to expand in the Potomac River. We hypothesized that the effective genetic population size would be much less than the census size of the snakehead population in the Potomac River. We collected tissue samples (fin clippings) from 79 snakehead collected in a recreational tournament held between Fort Washington and Wilson’s Landing, MD on the Potomac River and from electrofishing sampling conducted by the Maryland Department of Natural Resources in Pomonkey Creek, a tributary of the Potomac River. DNA was extracted from the tissue samples and scored for 12 microsatellite markers, which had previously been identified for Potomac River snakehead. Microsatellite allele frequency data were recorded and analyzed in the software programs GenAlEx and NeEstimator to estimate heterozygosity and effective genetic population size. Resampling simulations indicated that the number of microsatellites and the number of fish analyzed provided sufficient precision. Simulations indicated that the effective population size estimate would expect to stabilize for samples > 70 individual snakehead. Based on a sample of 79 fish scored for 12 microsatellites, we calculated an Ne of 15.3 individuals. This is substantially smaller than both the sample size and estimated population size. We conclude that genetic diversity in the snakehead population in the Potomac River is low because the population has yet to recover from a genetic bottleneck associated with a founder effect due to their recent introduction into the system.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The ability to manipulate gene expression promises to be an important tool for the management of infectious diseases and genetic disorders. However, a major limitation to effective delivery of therapeutic RNA to living cells is the cellular toxicity of conventional techniques. Team PANACEA’s research objective was to create new reagents based on a novel small-molecule delivery system that uses a modular recombinant protein vehicle consisting of a specific ligand coupled to a Hepatitis B Virus-derived RNA binding domain (HBV-RBD). Two such recombinant delivery proteins were developed: one composed of Interleukin-8, the other consisting of the Machupo Virus GP1 protein. The ability of these proteins to deliver RNA to cells were then tested. The non-toxic nature of this technology has the potential to overcome limitations of current methods and could provide a platform for the expansion of personalized medicine.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

There are hundreds of millions of songs available to the public, necessitating the use of music recommendation systems to discover new music. Currently, such systems account for only the quantitative musical elements of songs, failing to consider aspects of human perception of music and alienating the listener’s individual preferences from recommendations. Our research investigated the relationships between perceptual elements of music, represented by the MUSIC model, with computational musical features generated through The Echo Nest, to determine how a psychological representation of music preference can be incorporated into recommendation systems to embody an individual’s music preferences. Our resultant model facilitates computation of MUSIC factors using The Echo Nest features, and can potentially be integrated into recommendation systems for improved performance.