953 resultados para Enzimas - Purificação


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Estresse oxidativo é um desequilíbrio entre a geração de radicais livres e a capacidade de defesa do sistema antioxidante endógeno. Sabe-se também que o acúmulo extracelular de aminoácidos excitatórios leva a uma exacerbada estimulação de seus receptores, provocando insultos oxidativos no cérebro e pode levar a uma série de eventos que podem ser os causadores de diversas patologias como isquemia e doenças neurodegenerativas. A adenosina, ao ligar-se aos seus receptores, age como neuromoduladora da liberação desses neurotransmissores, protegendo as células contra o estresse oxidativo. Alem disso, sabe-se que a ativação de receptores de adenosina promove um aumento da atividade de enzimas antioxidantes. A Cafeína tem sua principal ação farmacológica através do antagonismo não seletivo dos receptores de adenosina, causando o bloqueio dos mesmos, e neste caso leva ao acúmulo de neurotransmissores no meio extracelular. Entretanto em altas concentrações, ela pode, por si só, ter ação antioxidante, “seqüestrando” radicais livres e, desta maneira, protegendo a célula do dano oxidativo. Por outro lado, alguns estudos demonstram que ela também pode ter ação pró-oxidante, quando em presença de altas concentrações de íons cobre e pode ter ação pró-apoptótica, via ativação da caspase 3. O objetivo deste trabalho foi a caracterização do efeito da ingestão crônica de cafeína (1g/L) por 7dias, sobre a atividade de enzimas de defesa antioxidantes (CAT, GSH-Px, SOD) em homogenato de hipocampo, cerebelo e estriado de ratos Wistar adultos. Nós também medimos a produção de radicais livres e a peroxidação de lipídeos Os resultados obtidos demonstraram que cafeína, administrada cronicamente, causa um aumento na peroxidação dos lipídeos de membranas e uma diminuição nas atividades das enzimas antioxidantes SOD e GSH-Px, nas três estruturas analisadas quando comparadas ao controle, porém não foi observada alteração na atividade da catalase. Além disso, não encontramos alteração nos níveis de produção de radicais livres. Portanto, embora alguns trabalhos demonstrem que a ingestão crônica de cafeína pode ter uma ação neuroprotetora, em nosso trabalho nós demonstramos que cafeína pode potencialmente provocar dano celular em estruturas cerebrais através da diminuição das enzimas antioxidantes. Provavelmente, esse efeito seja devido a uma diminuição da expressão e/ou número de receptores de adenosina (A1 ou A2) ou a cafeína está agindo somente como antagonista competitivo, bloqueando a ação da adenosina endógena. Outros experimentos são necessários para comprovar esta hipótese.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Os polímeros do tipo poli-hidroxialcanoatos (PHAs) são poliésteres bacterianos que apresentam as propriedades de termoplásticos e elastômeros biodegradáveis. A síntese deste polímero em plantas de interesse agroindustrial tem sido vista como uma área promissora dentro da biotecnologia de polímeros para a produção em grande escala com baixos custos. Contudo, esta tarefa requer o aprimoramento de diferentes metodologias bioquímicas e moleculares, além de maximizar os processos de extração destes polímeros biológicos. A produção de PHAs em peroxissomos ou no citoplasma de Saccharomyces cerevisiae, por meio da expressão de uma PHA-sintase bacteriana, pode servir como indicador e modulador do fluxo de carbonos que percorre vias biossintéticas como a síntese de novo de ácidos graxos e a β-oxidação. Esta levedura tem sido usada como eucarioto modelo para manipular as rotas envolvidas na síntese de PHAs do tipo MCL (PHA com um número médio de carbonos), um polímero menos cristalino e com menor ponto de fusão quando comparado ao PHA-SCL (PHA com um número pequeno de carbonos). A enzima PhaG (3-hidroxidecanoil-ACP-CoA transacilase) é responsável pela conexão entre a síntese de ácidos graxos e a produção de PHA-MCL em bactérias do gênero Pseudomonas, em meios de cultura contendo uma fonte de carbono nãorelacionada como gliconato, etanol ou acetato. Para tentar estabelecer esta rota metabólica em S. cerevisiae, o presente trabalho avaliou a coexpressão de PhaGPa e PhaC1Pa (PHA-sintase) de P. aeruginosa para a síntese de PHA-MCL a partir de uma fonte de carbono não-relacionada em leveduras. Contudo, a presença de PhaGPa não alterou a composição ou a quantidade de PHA-MCL em relação à cepa controle contendo apenas PhaC1Pa citoplasmática ou direcionada ao peroxissomo, independentemente da fonte de carbono utilizada (rafinose ou ácido oléico). Este resultado permite sugerir que a ligação entre a síntese de ácidos graxos e a produção de PHA-MCL em S. cerevisiae não foi estabelecida, provavelmente devido à ausência de algum passo enzimático que limita o desvio de substratos da síntese de ácidos graxos para a produção de PHA-MCL em organismos que não são capazes de acumular naturalmente este polímero quando cultivados em fontes de carbono não-relacionadas.A levedura S. cerevisiae tem sido usada como um sistema modelo para estudar a β-oxidação de ácidos graxos insaturados em peroxissomos. A produção de PHA-MCL pela expressão de PhaC1Pa em peroxissomos de cepas selvagens e mutantes nulos de S. cerevisiae para as enzimas auxiliares da β-oxidação (Eci1p, Sps19p e Dci1p), multiplicadas em meio de cultivo contendo um ácido graxo insaturado como fonte de carbono, permitiu monitorar o fluxo de carbonos que percorre as vias dependente de isomerase, redutase e di-isomerase. Desta forma, o presente estudo permitiu avaliar a β- oxidação in vivo dos ácidos graxos linoléico conjugado, 9-cis,11-trans-CLA (ácido rumênico) ou 10-cis,13-cis-nonadecadienóico, para determinar a contribuição das vias alternativas na degradação destes substratos pela utilização de cepas selvagens, mutantes nulos e linhagens contendo um plasmídio multicópia para os genes ECI1 (Δ3- Δ2-enoil-CoA isomerase), SPS19 (2,4-dienoil-CoA redutase) e DCI1 (Δ3,5-Δ2,4-dienoil- CoA isomerase). As linhagens selvagens foram capazes de sintetizar PHA-MCL quando cultivadas em ácido rumênico, mas a atividade da enzima Eci1p foi essencial para a degradação deste CLA, indicando que a via dependente de isomerase é a única rota in vivo necessária para a β-oxidação do ácido rumênico em peroxissomos de S. cerevisiae. A contribuição da enzima di-isomerase (Dci1p) para a degradação do ácido 10- cis,13-cis-nonadecadienóico foi avaliada em cepas selvagens, mutantes nulos dci1Δ e linhagens de S. cerevisiae contendo os plasmídeos multicópia. De acordo com o conteúdo e a quantidade de PHA formado, a β-oxidação de ácidos graxos cisinsaturados em um carbono ímpar é, in vivo, independente da di-isomerase. Embora este resultado possa indicar o mesmo padrão de envolvimento de Dci1p na degradação de ácidos graxos cis-insaturados em um carbono ímpar em mitocôndrias de mamíferos, esta via alternativa deve ser mais bem investigada em eucariotos superiores.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A redução do Cr(VI) para Cr(III) diminui a toxidade deste metal no ambiente uma vez que, o Cr(III) é insolúvel às membranas biológicas. Assim a redução microbiana do Cr(VI) é uma alternativa para reduzir os impactos ambientais causados por este metal, utilizado em diversos processos industriais. O objetivo deste trabalho foi selecionar microrganismos a partir de solo contaminado com cromo, caracterizar sua capacidade de redução do Cr(VI) durante o crescimento celular e purificar parcialmente a enzima cromo redutase do Bacillus sp. ES29, através da precipitação com sulfato de amônio (45-75%), cromatografia de gel filtração (Sephadex G-25) e cromatografia de interação hidrofóbica (Octyl Sepharose). A atividade de redução do Cr(VI) pelos isolados foi quantificada com o reagente de s-difenilcarbazida. No isolamento, foram obtidas 20 bactérias resistentes a cromo(VI). Seis destas foram capazes de reduzir 100 mg L-1 Cr(VI) em 24 horas. Um dos isolados foi identificado, através de testes bioquímicos, como pertencete ao gênero Bacillus, sendo tolerante a 750 mg L-1 Cr(VI) e reduzindo mais de 40% do Cr(VI) durante o crescimento celular. Na purificação parcial da enzima foi obtido um fator de purificação de 11,2, aumentando a atividade específica da enzima acima de 11 vezes, porém se faz necessário mais passos de purificações para obtenção desta enzima pura. As bactérias selecionadas e a enzima parcialmente purificada, foram eficientes na redução do Cr(VI) e apresentam potencial para outros estudos, visando a aplicação em processos de biorremediação.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

-D-glucosidase (EC 3.2.1.21) is one of the most interesting glycosidases, especially for hydrolysis cellobiose releasing glucose, is last step degradation of cellulose. This function makes the -D-glucosidase is of great interest as a versatile industrial biocatalyst, being critical to various bio-treatment / biorefinery processes, such as bioethanol production. Hen in the report, a -D-glucosidase was extracts from protein extracted of the invertebrate marine Artemia franciscana was purified and characterized with a combination of precipitation with ammonium sulfate (0 - 30%, 30 to 50%, 50 to 80%), the fraction saturated in the range of 30 to 50% (called F-II) was applied in a molecular exclusion chromatography, in Sephacryl S-200, the fractions corresponding to the first peak of activity of -D-glucosidase were gathered and applied in a chromatography of ion exchange in Mono Q; the third peak this protein obtained chromatography, which coincides with the peak of activity of -D-glucosidase was held and applied in a gel filtration chromatography Superose 12 where the first peak protein, which has activity of -D-glucosidase was rechromatography on Superose 12. This enzyme is probably multimerica, consisting of three subunit molecular mass of 52.7 kDa (determined by SDS-PAGE) with native molecular mass of 157 kDa (determined by gel filtration chromatography on Superose 12 under the system FPLC). The enzyme was purified 44.09 times with a recovery of 1.01%. Using up p-nitrophenyl-β-D-glucopiranoside as substrate obtained a Km apparent of 0.229 mM and a Vmax of 1.109 mM.60min-1.mL-1mM. The optimum pH and optimum temperature of catalysis of the synthetic substrate were 5.0 and 45 °C, respectively. The activity of the -D-glucosidase was strongly, inhibited by silver nitrate and N- etylmaleimide, this inhibition indicates the involvement of radical sulfidrila the hydrolysis of synthetic substrate. The -D-glucosidase of Artemia franciscana presented degradativa action on celobiose, lactose and on the synthetic substrate -nitrophenyl-β-D-glucopiranoside indicating potential use of this enzyme in the industry mainly for the production of bioethanol (production of alcohol from the participating cellulose), and production hydrolysate milk (devoid of milk lactose)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Four different sponge species were screened using Ouchterlony agarose gel and immunodiffusion tests to identify cross-reactivity with the polyclonal antibody IgG anti-deglicosilated CvL, a lectin from Cliona varians. Crude extract from the sponge Cinachyrella apion showed cross-reactivity and also a strong haemmaglutinating activity towards human erythrocytes of all ABO groups. Thus, it was submitted to acetone fractionation, IgG anti-deglicosilated CvL Sepharose affinity chromatography, and Fast Protein Liquid Chromatography (FPLC-AKTA) gel filtration on a Superose 6 10 300 column to purify a novel lectin. C. apion lectin (CaL) agglutinated all types of human erythrocytes with preference for papainized type A and O erythrocytes. The haemagglutinating activity is independent of Ca2+, Mg2+ and Mn2+ ions, and it was strongly inhibited by the disaccharide D-lactose, up to a minimum concentration of 6.25 mM. CaL molecular mass determined by FPLC-AKTA gel filtration on a Superose 12 10 300 column and SDS gel electrophoresis was approximately 124 kDa, consisting of eight subunits of 15.5 kDa, assembled by hydrophobic interactions. The lectin was relatively heat- and pH-stable. Leishmania chagasi romastigotes were agglutinated by CaL, indicating that lactose receptors could be presented in this parasite stage. These findings are indicative of the physiological defense roles of CaL and its possible use in the antibiosis of pathogenic protozoa

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work studies the involved enzymatic way in the metabolism of glycosaminoglycans sulfateds in the mollusc Pomacea sp. Had been identified endoglycosidases and exoglycosidases in the enzymatic extract of the mollusc Pomacea sp by means of hydrolysis activity in condroitim sulphate of whale cartilage and of the p-Nitrofenil-β-glucuronide, respectively. The enzymatic extracts qere obtained of Pomacea sp. being used of 0.1 sodium acetate buffer, pH 5.0 and later centrifugated the 8,000 x g and the presents proteins in the sobrenadante were submitted to the fractionament with two crescents ammonium sulphate concentrations, the visualized activity biggest in the F2 fraction (50-80%). The β-glucuronidase (F3) was isolated in gel chromatography filtration Biogel 1.5m, the purification degree was ratified in Chromatography Liquid of high efficiency (HPLC). The enzyme was purificated 6.362,5 times with 35,6% yield. The β -glucuronidase isolated in this work showed a molecular mass of 100 kDa, determined for eletroforese in poliacrilamida gel . The determination of the ideal kinetic parameters for the catalysis of the p-nitrofenil- β -glucuronide for β-glucuronidase, showed excellent activity in pH 5,0 and temperature 65ºC for 6 hours and apparent Km of 72 x 10-2 mM. It is necessary for the total degradation of 3mM of p-N-β-glucoronide, the amount of 1,2μg of ss-glucuronidase. The BaCl2 increased the activity of ss-glucuronidase, and the activity was inhibited completely by the composites SDS and NaH2PO4

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A β-D-N-acetilglucosaminidase extracted and partially isolated from crustacean Artemia franciscana by ammonium sulfate precipitation and filtration gel chromatography Bio Gel A 1.5m. the enzyme was immobilized on ferromagnetic Dacron yielding a insoluble active derivative with 5.0 units/mg protein and 10.35% of the soluble enzyme activity. β-D-N-acetilglucosaminidase-ferromagnetic Dacron was easily removed from the reaction mixture by a magnetic field, it was reused for ten times without loss in its activity. The ferromagnetic Dacron was better activated at pH 5.0. The particles visualized at scanning electron microscope (SEM) had presented different sizes, varying between 721nm and 100µm. Infra red confirmed immobilization on support, as showed by primary amino peaks at 1640 and 1560 cm-1 . The immobilize enzyme presented Km of 2.32 ± 0.48 mM and optimum temperature of 50°C. Bought presented the same thermal stable of the soluble enzyme and larger enzymatic activity at pH 5.5. β-D-N-acetilglucosaminidase-Dacron ferromagnético showed sensible for some íons as the silver (AgNO3), with loss of activity. The β-D-N acetilglucosaminidase activity for mercury chloride (HgCl2), whom is one of the most toxic substance joined in nature, it was presented activity already diminished at 0,01mM and lost total activity at 4mM, indicating sensitivity for this type of metal. β-D-N-acetilglucosaminidase-ferromagnetic Dacron showed degradative capacity on heparan sulfate, the enzyme still demonstrated degradative capacity on heparan sulphate, suggesting a possible application to produce fractions of this glycosaminoglycan

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, sulfated polysaccharides from marine algae have emerged as an important class of natural biopolymers with potential application in human and veterinary health care, while taking advantage of the absence of potential risk of contamination by animal viruses. Among these, fucans isolated from the cell walls of marine brown alga have been study due to their anticoagulant, antithrombotic, anti-inflammatory and antiviral activities. These biological effects of fucans have been found to depend on the degree of sulfation and molecular size of the polysaccharide chains. In the present study, we examined structural features of a fucan extracted from brown alga Dictyota menstrualis and its effect on the leukocyte migration to the peritoneum. The sulfated polysaccharides were extracted from the brown seaweed by proteolytic digestion, followed by sequential acetone precipitation producing 5 fractions. Gel lectrophoresis using 0.05 M 1,3-diaminopropane-acetate buffer, pH 9.0, stained with 0.1% toluidine blue, showed the presence of sulfated polysaccharides in all fractions. The chemical analyses demonstrated that all fractions are composed mainly of fucose, xylose, galactose, uronic acid, and sulfate. Electrophoresis in agarose gel in three different buffers demonstrated that the fraction 2.0v have only one population of fucan. This compound was purify by exclusion molecular. It has shown composition of fucose, xilose, sulfate and uronic acid in molar ration of 1.0: 1.7: 1.1: 0.5 respectively. The effect of this heterofucan on the leukocyte migration was observed 6h after zymozan (mg/g) administration into the peritoneum. The heterofucan showed higher antimigratory activity, it decrease the migration of leukocyte in 83.77% to peritoneum. The results suggest that this fucan is a new antimigratory compound with potential pharmacological appications

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A chymotrypsin inhibitor was purified from Erythrina velutina seeds by ammonium sulphate fractionation, affinities chromatographies on Trypsin-Sepharose, Quimotrypsin-Sepharose and reversed phase C-18 FPLC/AKTA system. The inhibitor, named EvCI, shown molecular mass of 17 kDa, as determined by SDSPAGE. 2D-PAGE showed four isoinhibitors with pI values of 4,42, 4,63, 4,83 and 5,06, with molecular mass of 17 kDa each. The aminoacid sequence of EvCI was determined by MALDI-TOF-MS and showed a high similarity with other Kunitz-type inhibitor of Erythrina variegata. EvCI competitively inhibited chymotrypsin, with Ki of 4 x10-8 M, but did not inhibited trypsin, pancreatic elastase, bromelain and papain. The inhibitory activity of EvCI was stable over wide pH and temperature ranges. In the presence of DTT 100 mM for 120 min, EvCI lost 50 % of activity. Cytotoxicity was studied in HeLa, MDA, HepG2, K562 and PC3 cells after 72-h incubation period. EvCl inhibited HeLa cells growth with an IC50 value of 50 μg/ml. Subsequent studies in HeLa cells analysis of cell death by annexin V/PI double-staining and cell cycle, using flow cytometry. The results provide evidence for a cytostatic activity of EvCl and support further studies on potential application of this inhibitors as an antiproliferative agent in combined therapy against cervical cancer

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 140,0 kDa lectin was purified and characterized from the mushroom Clavaria cristata. The purification procedures from the crude extract of the mushroom comprised gel filtration chromatography on Sephacryl s200 and ion exchange on Resource Q column. The purified lectin agglutinated all types of human erythrocytes with preference for trypsinized type O erythrocytes. The haemagglutinating activity is dependent of Ca 2+ ions and was strongly inhibited by the glycoprotein bovine submaxillary mucin (BSM) up to the concentration of 0, 125 mg/mL. The C. cristata lectin (CcL) was stable in the pH range of 2,5-11,5 and termostable up to 80 °C. CcL molecular mass determined by gel filtration on a Superose 6 10 300 column was approximately 140,3 kDa. SDS polyacrilamide gel electrophoresis revealed a single band with a molecular mass of approximately 14,5 kDa, when the lectin was heated at 100 ⁰C in the presence or absence of β-mercaptoethanol. CcL induced activation of murine peritoneal macrophages in vitro resulting in the release of nitric oxide (NO), reaching the maximum production at 24 h. In experimental paw oedema model in mice, CcL showed proinflammatory activity being able to induce oedema formation. Cell viability of HepG2, MDA 435 e 3T3 cell lines was examined after 72 h of incubation with CcL in different concentrations (0,5-50 μg/mL). CcL inhibited HepG2 cells growth with an IC50 value of 50 μg/mL. In the present work, the observed immunomodulatory and antiproliferative effects indicate CcL as a possible immunomodulator compound, interfering in the macrophages immune response, taking possible anti-parasitic, anti-tumoral effects or diagnostic and/or therapeutic

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The acquisition of oligosaccharides from chitosan has been the subject of several studies in the pharmaceutical, biochemical, food and medical due to functional properties of these compounds. This study aimed to boost its production of chitooligosaccharides (COS) through the optimization of production and characterization of chitosanolytic enzymes secreted by microorganisms Paenibacillus chitinolyticus and Paenibacillus ehimensis, and evaluating the antioxidant potential of the products obtained. In the process of optimizing the production of chitosanase were employed strategies Fractional Factorial Experimental Design and Central Composite Rotatable Design. The results identified the chitosan, peptone and yeast extract as the components that influenced the production of chitosanase by these microorganisms. With the optimization of the culture media was possible to obtain an increase of approximately 8.1 times (from 0.043 to 0.35 U.mL U.mL-1) and 7.6 times (from 0.08 U.mL-1 to 0.61 U.mL-1) in the enzymatic activity of chitosanase produced by P. chitinolyticus and P. ehimensis respectively. Enzyme complexes showed high stability in temperature ranges between 30º and 55º C and pH between 5.0 and 9.0. Has seen the share of organic solvents, divalent ions and other chemical agents on the activity of these enzymes, demonstrating high stability of these crude complexes and dependence of Mn2+. The COS generated showed the ability of DPPH radical scavenging activity, reaching a maximum rate of scavenging of 61% and 39% when they were produced with enzymes of P. ehimensis and P. chitinolyticus respectively. The use of these enzymes in raw form might facilitate its use for industrial applications

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Proteinases are enzymes distributed widely founded in several organisms and perform many different functions, from maintaining homeostasis to the worsening of some diseases such as cancer, autoimmune diseases and infections. The proteins responsible of controlling the action of these enzymes are the inhibitors, that are classified based on their target proteases and are founded since simple organisms, such as bacteria, to higher organisms, such as larger plants and mammals. Plant proteinase inhibitors act by reducing or inactivating the activity of target proteases, thus, these proteins have been studied as potential tools in the treatment of diseases related to protease activities. In this context, an inhibitor of chymotrypsin from Erythrina velutina, called EvCI was previously purified and it was observed that this protein plays in vitro anticoagulant activity and anti-inflammatory activity in in vivo model. Aiming to reduce the environmental impact caused by the purification EvCI in high amounts and to facilitate the process of obtaining this protein, the recombinant chymotrypsin inhibitor from Eryhrina velutina was produced after cloning and expression in Escherichia coli. The bacteria were grown in LB medium and after induction of the expression this material was subjected to procedures for cell lysis and the product was applied on Nickel-affinity column. The proteins adsorbed were digested by thrombin and applied on Chymotrypsin-Sepharose affinity column, obtaining the purified inhibitor, named recEvCI. After electrophoresis, the recombinant inhibitor showed an approximately molecular mass of 17 kDa, and reduced the chymotrypsin and elastase activities in vitro. The recombinant inhibitor was sequenced and was found similar amino acids residues when compared to other inhibitors deposited in the database, with some modifications. recEvCI showed high stability under pH variations and reducing conditions, maintaining its activity around 80%. This protein increased the blood coagulation time in vitro by acting on the intrinsic pathway and did not show cytotoxicity against strains of mouse 3T3 fibroblasts and RAW 264.7 macrophages. recEvCI showed microbicide activity related to release of nitric oxide and consequently the activation of macrophages, futhermore having proinflammatory effects assessed by increased release of TNF-α. These results indicate that recEvCI can be biotechnologically used as a new tool in the control of coagulation-related diseases as well as can be an activating agent of the immune system in immunosuppressed individuals

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chitinases are enzymes involved in degradation of chitin and are present in a range of organisms, including those that do not contain chitin, such as bacteria, viruses, plants and animals, and play important physiological and ecological roles. Chitin is hydrolyzed by a chitinolytic system classified as: endo-chitinases, exo-chitinases and N-acetyl-b-D-glucosaminidases. In this study a Litochitinase1 extracted from the cephalotorax of the shrimp Litopenaeus Schmitt was purified 987.32 times using ionexchange chromatography DEAE-Biogel and molecular exclusion Sephacryl S-200. These enzyme presented a molecular mass of about 28.5 kDa. The results, after kinetic assay with the Litochitinase1 using as substrate p-nitrophenyl-N-acetyl-b-Dglucosaminideo, showed apparent Km of 0.51 mM, optimal activity at pH ranging from 5.0 to 6.0, optimum temperature at 55°C and stability when pre-incubated at temperatures of 25, 37, 45, 50 and 55°C. The enzyme showed a range of stability at pH 4.0 to 5.5. HgCl2 inhibited Litochitinase1 while MgCl2 enhances its activity. Antimicrobial tests showed that Litochitinase1 present activity against gram-negative bacterium Escherichia coli in the 800 μg/mL concentration. The larvicidal activity against Aedes aegypti was investigated using crude extracts, F-III (50-80%) and Litochitinase1 at 24 and 48 hours. The results showed larvicidal activity in all these samples with EC50 values of 6.59 mg/mL for crude extract, 5.36 mg/mL for F-III and 0.71 mg/mL for Litochitinase1 at 24 hours and 3.22 and 0.49 mg/mL for the F-III and Litochitinase1 at 48 hours, respectively. Other experiments confirmed the presence of chitin in the midgut of Aedes aegypti larvae, which may be suffering the action of Litochitinase1 killing the larvae, but also the absence of contaminating proteins as serine proteinase inhibitors and lectins in the crude extract, F-III and Litochitinase1, indicating that the death of the larvae is by action of the Litochitinase1. We also observed that the enzymes extracted from intestinal homogenate of the larvae no have activity on Litochitinase1. These results indicate that the enzyme can be used as an alternative to control of infections caused by Escherichia coli and reducing the infestation of the mosquito vector of dengue.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lectin obtained from the marine sponge Tedania ignis was purified and characterized by extraction of soluble proteins (crude extract) in 50mM Borax, pH 7.5. The purification procedure was carried out by crude extract precipitation with ammonium sulfate 30% (FI). The precipitated was resuspended in the same buffer and fractionated with acetone 1.0 volume (F1.0). A lectin was purified from this specific fraction by using an affinity chromatography Sepharose 6B. This lectin preferentially agglutinated human erythrocytes from B type previously treated with papain enzyme. The hemagglutinating activity lectin was dependent of divalent Mn2+ cation and was inhibited by the carbohydrates galactose, xylose and fructose. SDS-PAGE analysis indicated a molecular mass of the lectin around 45 kDa. This protein showed stability until 40°C for 1 h. Further, it showed activity between pH 2.5 and 11.5, with an enhanced activity at pH 7.5. Leishmania chagasi promastigotes stained with Coomassie brilliant blue R-250 were agglutinated by F1,0 and in the presence of galactose this interaction was abolished. These results show that this lectin could be implicated in defense procedures and it will can be used as biological tools in studies with this protozoon

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report shows 2232 times purification of a βNAcetylhexosaminidase from hepatic extracts from the sea mammal Sotalia fluviatilis homogenate with final recovery of 8,4%. Sequenced steps were utilized for enzyme purification: ammonium sulfate fractionation, Biogel A 1.5 m, chitin, DEAESepharose and hydroxyapatite chromatographies. The protein molecular mass was estimated in 10 kDa using SDSPAGE and confirmed by MALDITOF. It was found to have an optimal pH of 5.0 and a temperature of 60°C. Using pnitrophenylNAcetylβDglycosaminide apparent Km and Vmax values were of 2.72 mM and 0.572 nmol/mg/min, respectively. The enzyme was inhibited by mercury chloride (HgCl2) and sodium dodecil sulfate (SDS)