99 resultados para CXCR4


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Notch is an intercellular signaling pathway related mainly to sprouting neo-angiogenesis. The objective of our study was to evaluate the angiogenic mechanisms involved in the vascular augmentation (sprouting/intussusception) after Notch inhibition within perfused vascular beds using the chick area vasculosa and MxCreNotch1(lox/lox) mice. In vivo monitoring combined with morphological investigations demonstrated that inhibition of Notch signaling within perfused vascular beds remarkably induced intussusceptive angiogenesis (IA) with resultant dense immature capillary plexuses. The latter were characterized by 40 % increase in vascular density, pericyte detachment, enhanced vessel permeability, as well as recruitment and extravasation of mononuclear cells into the incipient transluminal pillars (quintessence of IA). Combination of Notch inhibition with injection of bone marrow-derived mononuclear cells dramatically enhanced IA with 80 % increase in vascular density and pillar number augmentation by 420 %. Additionally, there was down-regulation of ephrinB2 mRNA levels consequent to Notch inhibition. Inhibition of ephrinB2 or EphB4 signaling induced some pericyte detachment and resulted in up-regulation of VEGFRs but with neither an angiogenic response nor recruitment of mononuclear cells. Notably, Tie-2 receptor was down-regulated, and the chemotactic factors SDF-1/CXCR4 were up-regulated only due to the Notch inhibition. Disruption of Notch signaling at the fronts of developing vessels generally results in massive sprouting. On the contrary, in the already existing vascular beds, down-regulation of Notch signaling triggered rapid augmentation of the vasculature predominantly by IA. Notch inhibition disturbed vessel stability and led to pericyte detachment followed by extravasation of mononuclear cells. The mononuclear cells contributed to formation of transluminal pillars with sustained IA resulting in a dense vascular plexus without concomitant vascular remodeling and maturation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND Pulmonary fibrosis may result from abnormal alveolar wound repair after injury. Hepatocyte growth factor (HGF) improves alveolar epithelial wound repair in the lung. Stem cells were shown to play a major role in lung injury, repair and fibrosis. We studied the presence, origin and antifibrotic properties of HGF-expressing stem cells in usual interstitial pneumonia. METHODS Immunohistochemistry was performed in lung tissue sections and primary alveolar epithelial cells obtained from patients with usual interstitial pneumonia (UIP, n = 7). Bone marrow derived stromal cells (BMSC) from adult male rats were transfected with HGF, instilled intratracheally into bleomycin injured rat lungs and analyzed 7 and 14 days later. RESULTS In UIP, HGF was expressed in specific cells mainly located in fibrotic areas close to the hyperplastic alveolar epithelium. HGF-positive cells showed strong co-staining for the mesenchymal stem cell markers CD44, CD29, CD105 and CD90, indicating stem cell origin. HGF-positive cells also co-stained for CXCR4 (HGF+/CXCR4+) indicating that they originate from the bone marrow. The stem cell characteristics were confirmed in HGF secreting cells isolated from UIP lung biopsies. In vivo experiments showed that HGF-expressing BMSC attenuated bleomycin induced pulmonary fibrosis in the rat, indicating a beneficial role of bone marrow derived, HGF secreting stem cells in lung fibrosis. CONCLUSIONS HGF-positive stem cells are present in human fibrotic lung tissue (UIP) and originate from the bone marrow. Since HGF-transfected BMSC reduce bleomycin induced lung fibrosis in the bleomycin lung injury and fibrosis model, we assume that HGF-expressing, bone-marrow derived stem cells in UIP have antifibrotic properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is not known how naive B cells compute divergent chemoattractant signals of the T-cell area and B-cell follicles during in vivo migration. Here, we used two-photon microscopy of peripheral lymph nodes (PLNs) to analyze the prototype G-protein-coupled receptors (GPCRs) CXCR4, CXCR5, and CCR7 during B-cell migration, as well as the integrin LFA-1 for stromal guidance. CXCR4 and CCR7 did not influence parenchymal B-cell motility and distribution, despite their role during B-cell arrest in venules. In contrast, CXCR5 played a nonredundant role in B-cell motility in follicles and in the T-cell area. B-cell migration in the T-cell area followed a random guided walk model, arguing against directed migration in vivo. LFA-1, but not α4 integrins, contributed to B-cell motility in PLNs. However, stromal network guidance was LFA-1 independent, uncoupling integrin-dependent migration from stromal attachment. Finally, we observed that despite a 20-fold reduction of chemokine expression in virus-challenged PLNs, CXCR5 remained essential for B-cell screening of antigen-presenting cells. Our data provide an overview of the contribution of prototype GPCRs and integrins during naive B-cell migration and shed light on the local chemokine availability that these cells compute.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Intravital imaging has revealed that T cells change their migratory behavior during physiological activation inside lymphoid tissue. Yet, it remains less well investigated how the intrinsic migratory capacity of activated T cells is regulated by chemokine receptor levels or other regulatory elements. Here, we used an adjuvant-driven inflammation model to examine how motility patterns corresponded with CCR7, CXCR4, and CXCR5 expression levels on ovalbumin-specific DO11.10 CD4(+) T cells in draining lymph nodes. We found that while CCR7 and CXCR4 surface levels remained essentially unaltered during the first 48-72 h after activation of CD4(+) T cells, their in vitro chemokinetic and directed migratory capacity to the respective ligands, CCL19, CCL21, and CXCL12, was substantially reduced during this time window. Activated T cells recovered from this temporary decrease in motility on day 6 post immunization, coinciding with increased migration to the CXCR5 ligand CXCL13. The transiently impaired CD4(+) T cell motility pattern correlated with increased LFA-1 expression and augmented phosphorylation of the microtubule regulator Stathmin on day 3 post immunization, yet neither microtubule destabilization nor integrin blocking could reverse TCR-imprinted unresponsiveness. Furthermore, protein kinase C (PKC) inhibition did not restore chemotactic activity, ruling out PKC-mediated receptor desensitization as mechanism for reduced migration in activated T cells. Thus, we identify a cell-intrinsic, chemokine receptor level-uncoupled decrease in motility in CD4(+) T cells shortly after activation, coinciding with clonal expansion. The transiently reduced ability to react to chemokinetic and chemotactic stimuli may contribute to the sequestering of activated CD4(+) T cells in reactive peripheral lymph nodes, allowing for integration of costimulatory signals required for full activation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE To investigate the regulatory effect of tumour necrosis factor (TNF) blockade with infliximab on the distribution of peripheral blood monocyte subpopulations in patients with rheumatoid arthritis (RA) and ankylosing spondylitis (AS). METHODS Purified CD11b+CD14+ monocytes from 5 patients with RA and 5 AS were analysed ex vivo before and after infliximab treatment by flow cytometry for CD16, CD163, CD11b, C-C chemokine receptor type 2 (CCR2) and CXC chemokine receptor 4 (CXCR4) at baseline and at days 2, 14, 84 and 168 after the first infliximab administration. Serum levels of the stromal cell-derived factor (SDF)-1 and monocyte chemotactic peptide (MCP)-1 at different time points were measured in either patient group before and on infliximab treatment. RESULTS Anti-TNF treatment with infliximab led to a significant increase of circulating CD11b+ non-classical and a concomitantly decrease of CD11b+ classical monocytes, to a decline in SDF-1 levels and reduced expression of CCR2 and CXCR4 on non-classical monocyte subpopulation. CONCLUSIONS Our study shows, that TNFα blockade by infliximab resulted in a dichotomy of the regulation of classical and non-classical monocytes that might have substantial impact on inhibition of osteoclastogenesis and of subsequent juxta-articular bone destruction and systemic bone loss in RA and AS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Metastasis, the major cause of morbidity and mortality in most cancers, is a highly organized and organ-selective process. The receptor tyrosine kinase HER2 enhances tumor metastasis, however, its role in homing to metastatic organs is poorly understood. The chemokine receptor CXCR4 has recently been shown to mediate the malignant cancer cells to specific organs. Here we show that HER2 enhances the expression of CXCR4 by increasing CXCR4 protein synthesis and inhibiting its degradation. We also observed significant correlation between HER2 and CXCR4 expression in human breast tumor tissues, and an association between CXCR4 expression and a poor overall survival rate in patients with breast cancer. Furthermore, we found that CXCR4 is required for HER2-induced invasion, migration, and adhesion activities in vitro . Finally we established stable transfectants using retroviral RNA interference to inhibit CXCR4 expression and showed that the CXCR4 is required for HER2-mediated lung metastasis in vivo. These results provide a plausible mechanism for HER2-mediated breast tumor metastasis and homing to metastatic organs, and establish a functional link between the receptor tyrosine kinase HER2 and the chemokine receptor CXCR4 signaling pathways. ^ The HER2 overexpression activates PI-3K/Akt pathways and plays an important role in mediating cell survival and tumor development. Hypoxia inducible factors (HIF) are the key regulator for angiogenesis and energy metabolism, and thereby enhance tumor growth and metastasis. HIF activation occurs in the majority of human cancers, including the HER2 overexpressing cancer cells. Previous reports suggested that increased PI-3K/Akt may activate HIF pathway in various tumors, but the detail mechanism is still not completely understood. Here we found that HER2/PI-3K/Akt pathway induces HIF-1α activation, which is independent of hypoxia, but relatively weaker than hypoxic stimulation. This phenomenon was further observed in Akt knock out mouse embryonic fibroblast cells. The PI-3K/Akt pathway does not affect HIF-1α binding with its E3 ligase VHL, but enhances the binding affinity between HIF-1α and β unit. Furthermore, we found Akt phosphorylates HIF-1β at serine 271 and further regulated HIF transcriptional activity. Our findings provided one mechanism that HER2 induce HIF activation via Akt to promote angiogenesis, and this process is independent on hypoxia, which may have implications in the oncogenic activity of HER2 and PI-3K/Akt pathway. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stromal cell-derived factor-1α (SDF-1α ) is a member of the chemokine superfamily and functions as a growth factor and chemoattractant through activation of CXCR4/LESTR/Fusin, a G protein-coupled receptor. This receptor also functions as a coreceptor for T-tropic syncytium-inducing strains of HIV-1. SDF-1α antagonizes infectivity of these strains by competing with gp120 for binding to the receptor. The crystal structure of a variant SDF-1α ([N33A]SDF-1α ) prepared by total chemical synthesis has been refined to 2.2-Å resolution. Although SDF-1α adopts a typical chemokine β-β-β-α topology, the packing of the α-helix against the β-sheet is strikingly different. Comparison of SDF-1α with other chemokine structures confirms the hypothesis that SDF-1α may be either an ancestral protein from which all other chemokines evolved or the chemokine that is the least divergent from a primordial chemokine. The structure of SDF-1α reveals a positively charged surface ideal for binding to the negatively charged extracellular loops of the CXCR4 HIV-1 coreceptor. This ionic complementarity is likely to promote the interaction of the mobile N-terminal segment of SDF-1α with interhelical sites of the receptor, resulting in a biological response.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Infection with HIV-1 results in pronounced immune suppression and susceptibility to opportunistic infections (OI). Reciprocally, OI augment HIV-1 replication. As we have shown for Mycobacterium avium complex (MAC) and Pneumocystis carinii, macrophages infected with opportunistic pathogens and within lymphoid tissues containing OI, exhibit striking levels of viral replication. To explore potential underlying mechanisms for increased HIV-1 replication associated with coinfection, blood monocytes were exposed to MAC antigens (MAg) or viable MAC and their levels of tumor necrosis factor α (TNFα) and HIV-1 coreceptors monitored. MAC enhanced TNFα production in vitro, consistent with its expression in coinfected lymph nodes. Using a polyclonal antibody to the CCR5 coreceptor that mediates viral entry of macrophage tropic HIV-1, a subset of unstimulated monocytes was shown to be CCR5-positive by fluorescence-activated cell sorter analysis. After stimulation with MAg or infection with MAC, CCR5 expression was increased at both the mRNA level and on the cell surface. Up-regulation of CCR5 by MAC was not paralleled by an increase in the T cell tropic coreceptor, CXCR4. Increases in NF-κB, TNFα, and CCR5 were consistent with the enhanced production of HIV-1 in MAg-treated adherent macrophage cultures as measured by HIV-1 p24 levels. Increased CCR5 was also detected in coinfected lymph nodes as compared with tissues with only HIV-1. The increased production of TNFα, together with elevated expression of CCR5, provide potential mechanisms for enhanced infection and replication of HIV-1 by macrophages in OI-infected cells and tissues. Consequently, treating OI may inhibit not only the OI-induced pathology, but also limit the viral burden.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Primary CD8+ T cells from HIV+ asymptomatics can suppress virus production from CD4+ T cells acutely infected with either non-syncytia-inducing (NSI) or syncytia-inducing (SI) HIV-1 isolates. NSI strains of HIV-1 predominantly use the CCR5 chemokine receptor as a fusion cofactor, whereas fusion of T cell line-adapted SI isolates is mediated by another chemokine receptor, CXCR4. The CCR5 ligands RANTES (regulated on activation, normal T cell expressed and secreted), macrophage inflammatory protein 1α (MIP-1α), and MIP-1β are HIV-1 suppressive factors secreted by CD8+ cells that inhibit NSI viruses. Recently, the CXC chemokine stromal cell-derived factor 1 (SDF-1) was identified as a ligand for CXCR4 and shown to inhibit SI strains. We speculated that SDF-1 might be an effector molecule for CD8+ suppression of SI isolates and assessed several SDF-1 preparations for inhibition of HIV-1LAI-mediated cell–cell fusion, and examined levels of SDF-1 transcripts in CD8+ T cells. SDF-1 fusion inhibitory activity correlated with the N terminus, and the α and β forms of SDF-1 exhibited equivalent fusion blocking activity. SDF-1 preparations having the N terminus described by Bleul et al. (Bleul, C.C., Fuhlbrigge, R.C., Casasnovas, J.M., Aiuti, A. & Springer, T.A. (1996) J. Exp. Med. 184, 1101–1109) readily blocked HIV-1LAI-mediated fusion, whereas forms containing two or three additional N-terminal amino acids lacked this activity despite their ability to bind and/or signal through CXCR4. Though SDF-1 is constitutively expressed in most tissues, CD8 T cells contained extremely low levels of SDF-1 mRNA transcripts (<1 transcript/5,000 cells), and these levels did not correlate with virus suppressive activity. We conclude that suppression of SI strains of HIV-1 by CD8+ T cells is unlikely to involve SDF-1.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The HIV-1 envelope protein gp120 induces apoptosis in hippocampal neurons. Because chemokine receptors act as cellular receptors for HIV-1, we examined rat hippocampal neurons for the presence of functional chemokine receptors. Fura-2-based Ca imaging showed that numerous chemokines, including SDF-1α, RANTES, and fractalkine, affect neuronal Ca signaling, suggesting that hippocampal neurons possess a wide variety of chemokine receptors. Chemokines also blocked the frequency of spontaneous glutamatergic excitatory postsynaptic currents recorded from these neurons and reduced voltage-dependent Ca currents in the same neurons. Reverse transcription–PCR demonstrated the expression of CCR1, CCR4, CCR5, CCR9/10, CXCR2, CXCR4, and CX3CR1, as well as the chemokine fractalkine in these neurons. Both fractalkine and macrophage-derived chemokine (MDC) produced a time-dependent activation of extracellular response kinases (ERK)-1/2, whereas no activation of c-JUN NH2-terminal protein kinase (JNK)/stress-activated protein kinase, or p38 was evident. Furthermore, these two chemokines, as well as SDF-1α, activated the Ca- and cAMP-dependent transcription factor CREB. Several chemokines were able also to block gp120-induced apoptosis of hippocampal neurons, both in the presence and absence of the glial feeder layer. These data suggest that chemokine receptors may directly mediate gp120 neurotoxicity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Brain capillary endothelial cells (BCECs) are targets of CD4-independent infection by HIV-1 and simian immunodeficiency virus (SIV) strains in vitro and in vivo. Infection of BCECs may provide a portal of entry for the virus into the central nervous system and could disrupt blood–brain barrier function, contributing to the development of AIDS dementia. We found that rhesus macaque BCECs express chemokine receptors involved in HIV and SIV entry including CCR5, CCR3, CXCR4, and STRL33, but not CCR2b, GPR1, or GPR15. Infection of BCECs by the neurovirulent strain SIV/17E-Fr was completely inhibited by aminooxypentane regulation upon activation, normal T cell expression and secretion in the presence or absence of ligands, but not by eotaxin or antibodies to CD4. We found that the envelope (env) proteins from SIV/17E-Fr and several additional SIV strains mediated cell–cell fusion and virus infection with CD4-negative, CCR5-positive cells. In contrast, fusion with cells expressing the coreceptors STRL33, GPR1, and GPR15 was CD4-dependent. These results show that CCR5 can serve as a primary receptor for SIV in BCECs and suggest a possible CD4-independent mechanism for blood–brain barrier disruption and viral entry into the central nervous system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

HIV-1 entry into CD4+ cells requires the sequential interactions of the viral envelope glycoproteins with CD4 and a coreceptor such as the chemokine receptors CCR5 and CXCR4. A plausible approach to blocking this process is to use small molecule antagonists of coreceptor function. One such inhibitor has been described for CCR5: the TAK-779 molecule. To facilitate the further development of entry inhibitors as antiviral drugs, we have explored how TAK-779 acts to prevent HIV-1 infection, and we have mapped its site of interaction with CCR5. We find that TAK-779 inhibits HIV-1 replication at the membrane fusion stage by blocking the interaction of the viral surface glycoprotein gp120 with CCR5. We could identify no amino acid substitutions within the extracellular domain of CCR5 that affected the antiviral action of TAK-779. However, alanine scanning mutagenesis of the transmembrane domains revealed that the binding site for TAK-779 on CCR5 is located near the extracellular surface of the receptor, within a cavity formed between transmembrane helices 1, 2, 3, and 7.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We recently derived a CD4-independent virus from HIV-1/IIIB, termed IIIBx, which interacts directly with the chemokine receptor CXCR4 to infect cells. To address the underlying mechanism, a cloned Env from the IIIBx swarm (8x) was used to produce soluble gp120. 8x gp120 bound directly to cells expressing only CXCR4, whereas binding of IIIB gp120 required soluble CD4. Using an optical biosensor, we found that CD4-induced (CD4i) epitopes recognized by mAbs 17b and 48d were more exposed on 8x than on IIIB gp120. The ability of 8x gp120 to bind directly to CXCR4 and to react with mAbs 17b and 48d in the absence of CD4 indicated that this gp120 exists in a partially triggered but stable state in which the conserved coreceptor-binding site in gp120, which overlaps with the 17b epitope, is exposed. Substitution of the 8x V3 loop with that from the R5 virus strain BaL resulted in an Env (8x-V3BaL) that mediated CD4-independent CCR5-dependent virus infection and a gp120 that bound to CCR5 in the absence of CD4. Thus, in a partially triggered Env protein, the V3 loop can change the specificity of coreceptor use but does not alter CD4 independence, indicating that these properties are dissociable. Finally, IIIBx was more sensitive to neutralization by HIV-positive human sera, a variety of anti-IIIB gp120 rabbit sera, and CD4i mAbs than was IIIB. The sensitivity of this virus to neutralization and the stable exposure of a highly conserved region of gp120 suggest new strategies for the development of antibodies and small molecule inhibitors to this functionally important domain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Substance P (SP) is a potent modulator of neuroimmunoregulation. We recently reported that human immune cells express SP and its receptor. We have now investigated the possible role that SP and its receptor plays in HIV infection of human mononuclear phagocytes. SP enhanced HIV replication in human blood-isolated mononuclear phagocytes, whereas the nonpeptide SP antagonist (CP-96,345) potently inhibited HIV infectivity of these cells in a concentration-dependent fashion. CP-96,345 prevented the formation of typical giant syncytia induced by HIV Bal strain replication in these cells. This inhibitory effect of CP-96,345 was because of the antagonism of neurokinin-1 receptor, a primary SP receptor. Both CP-96,345 and anti-SP antibody inhibited SP-enhanced HIV replication in monocyte-derived macrophages (MDM). Among HIV strains tested (both prototype and primary isolates), only the R5 strains (Bal, ADA, BL-6, and CSF-6) that use the CCR5 coreceptor for entry into MDM were significantly inhibited by CP-96,345; in contrast, the X4 strain (UG024), which uses CXCR4 as its coreceptor, was not inhibited. In addition, the M-tropic ADA (CCR5-dependent)-pseudotyped HIV infection of MDM was markedly inhibited by CP-96,345, whereas murine leukemia virus-pseudotyped HIV was not affected, indicating that the major effect of CP-96,345 is regulated by Env-determined early events in HIV infection of MDM. CP-96,345 significantly down-regulated CCR5 expression in MDM at both protein and mRNA levels. Thus, SP–neurokinin-1 receptor interaction may play an important role in the regulation of CCR5 expression in MDM, affecting the R5 HIV strain infection of MDM.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O nicho endosteal da medula óssea abriga as células-tronco hemopoéticas (CTH) em quiescência/autorrenovação. As CTH podem ser classificadas em dois grupos: células que reconstituem a hemopoese em longo prazo (LT-CTH) e curto prazo (CT-CTH). Investigamos, neste trabalho, os efeitos da desnutrição proteica (DP) no tecido ósseo e a participação do nicho endosteal na sinalização osteoblasto-CTH. Para tanto, utilizamos camundongos submetidos à DP induzida pelo consumo de ração hipoproteica. Os animais desnutridos apresentaram pancitopenia e diminuição nas concentrações de proteínas séricas e albumina. Quantificamos as CTH por citometria de fluxo e verificamos que os desnutridos apresentaram menor porcentagem de LT-CTH, CT-CTH e de progenitores multipotentes (PMP). Avaliamos a expressão das proteínas CD44, CXCR4, Tie-2 e Notch-1 nas LT-CTH. Observamos diminuição da expressão da proteína CD44 nos desnutridos. Isolamos as células LT-CTH por cell sorting e avaliamos a expressão gênica de CD44, CXCR4 e NOTCH-1. Verificamos que os desnutridos apresentaram menor expressão de CD44. Em relação ao ciclo celular, verificamos maior quantidade de LT-CTH nas fases G0/G1. Caracterizamos as alterações do tecido ósseo femoral, in vivo. Observamos diminuição da densidade mineral óssea e da densidade medular nos desnutridos. A desnutrição acarretou diminuição da área média das seções transversais, do perímetro do periósteo e do endósteo na cortical do fêmur dos animais. E na região trabecular, verificou-se diminuição da razão entre volume ósseo e volume da amostra e do número de trabéculas, aumento da distância entre as trabéculas e prevalência de trabéculas ósseas em formato cilíndrico. Avaliamos a expressão de colágeno, osteonectina (ON) e osteocalcina (OC) por imuno-histoquímica, e de osteopontina (OPN) por imunofluorescência no fêmur e verificamos diminuição da marcação para OPN, colágeno tipo I, OC e ON nos desnutridos. Evidenciamos, pela técnica do Picrosírius, desorganização na distribuição das fibras colágenas e presença de fibras tipo III nos fêmures dos desnutridos, além de maior número de osteoclastos evidenciados pela reação da fosfatase ácida tartarato resistente. Os osteoblastos da região femoral foram isolados por depleção imunomagnética, imunofenotipados por citometria de fluxo e cultivados em meio de indução osteogênica. Observamos menor positividade para fosfatase alcalina e vermelho de alizarina nas culturas dos osteoblastos dos desnutridos. Avaliamos, por Western Blotting, a expressão de colágeno tipo I, OPN, osterix, Runx2, RANKL e osteoprotegerina (OPG), e, por PCR em tempo real, a expressão de COL1A2, SP7, CXCL12, ANGPT1, SPP1, JAG2 e CDH2 nos osteoblastos isolados. Verificamos que a desnutrição acarretou diminuição da expressão proteica de osterix e OPG e menor expressão gênica de ANGPT1. Avaliamos a proliferação das células LSK (Lin-Sca1+c-Kit+) utilizando ensaio de CFSE (carboxifluoresceína succinimidil ester). Foi realizada cocultura de células LSK e osteoblastos (MC3T3-E1) na presença e ausência de anti-CD44. Após uma semana, verificamos menor proliferação das LSK dos desnutridos. O bloqueio de CD44 das LSK do grupo controle diminuiu a proliferação destas em três gerações. Entretanto, nos desnutridos, esse bloqueio não afetou a proliferação. Concluímos que a DP promoveu alterações no tecido ósseo e nas CTH. Entretanto, não podemos afirmar que as alterações observadas no sistema hemopoético foram decorrentes de alterações exclusivas do nicho endosteal.