934 resultados para CD4 T lymphocyte


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of the present trial was to determine the frequencies and absolute number of B and T lymphocytes subpopulations in bovine leukemia virus (BLV)-infected dairy cows with distinct lymphocyte profile known as non-leukemic (AL) and persistent lymphocytosis (PL). Thus, 15 animals were selected and divided uniformly in three groups (negative, AL, PL). The BLV infection was detected by agar gel immunodiffusion and enzyme-linked immunosorbent-assay. The lymphocytes subsets were evaluated using monoclonal antibodies by flow cytometry. The results of the present study pointed out to an increase in B lymphocytes, and also an augment in CD5(+) and CD11b(+) cells in animals showing PL. Consequently, it can be observed a decrease in the percentage of T cells subsets in these animals. Conversely, no significant alterations in the absolute number of the T lymphocytes, T CD4(+) cells and T CD8(+) lymphocytes were found in BLV-infected dairy cows with PL. Therefore, the correlation between the absolute numbers of B- and T cell subsets in the peripheral blood applied to each group showed a significant and positive strong correlation between numbers of B cells and T cells or T CD8(+) cells in the PL animals, although the same cannot be predicted for T CD4(+) lymphocytes. No such correlation was encountered for the AL and negative-control animals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The pathology of relapsing-remitting multiple sclerosis (RR-MS) is largely attributed to activated autoreactive effector T lymphocytes. The influence of microRNAs on the immune response has been shown to occur in different pathways of lymphocyte differentiation and function. Here, the expression of the miRNAs miR-15a/161 in PBMC, CD4(+), and CD8(+) from RR-MS patients has been investigated. BCL2, a known miR-15a/16-1 target, has also been analyzed. The results have shown that miR-15a/16-1 is downregulated in CD4(+) T cells, whereas BCL2 is highly expressed in RR-MS patients only. Our data suggest that miR-15a/16-1 can also modulate the BCL2 gene expression in CD4(+) T cells from RR-MS patients, thereby affecting apoptosis processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Background Saliva is a key element of interaction between hematophagous mosquitoes and their vertebrate hosts. In addition to allowing a successful blood meal by neutralizing or delaying hemostatic responses, the salivary cocktail is also able to modulate the effector mechanisms of host immune responses facilitating, in turn, the transmission of several types of microorganisms. Understanding how the mosquito uses its salivary components to circumvent host immunity might help to clarify the mechanisms of transmission of such pathogens and disease establishment. Methods Flow cytometry was used to evaluate if increasing concentrations of A. aegypti salivary gland extract (SGE) affects bone marrow-derived DC differentiation and maturation. Lymphocyte proliferation in the presence of SGE was estimated by a colorimetric assay. Western blot and Annexin V staining assays were used to assess apoptosis in these cells. Naïve and memory cells from mosquito-bite exposed mice or OVA-immunized mice and their respective controls were analyzed by flow cytometry. Results Concentration-response curves were employed to evaluate A. aegypti SGE effects on DC and lymphocyte biology. DCs differentiation from bone marrow precursors, their maturation and function were not directly affected by A. aegypti SGE (concentrations ranging from 2.5 to 40 μg/mL). On the other hand, lymphocytes were very sensitive to the salivary components and died in the presence of A. aegypti SGE, even at concentrations as low as 0.1 μg/mL. In addition, A. aegypti SGE was shown to induce apoptosis in all lymphocyte populations evaluated (CD4+ and CD8+ T cells, and B cells) through a mechanism involving caspase-3 and caspase-8, but not Bim. By using different approaches to generate memory cells, we were able to verify that these cells are resistant to SGE effects. Conclusion Our results show that lymphocytes, and not DCs, are the primary target of A. aegypti salivary components. In the presence of A. aegypti SGE, naïve lymphocyte populations die by apoptosis in a caspase-3- and caspase-8-dependent pathway, while memory cells are selectively more resistant to its effects. The present work contributes to elucidate the activities of A. aegypti salivary molecules on the antigen presenting cell-lymphocyte axis and in the biology of these cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Saliva is a key element of interaction between hematophagous mosquitoes and their vertebrate hosts. In addition to allowing a successful blood meal by neutralizing or delaying hemostatic responses, the salivary cocktail is also able to modulate the effector mechanisms of host immune responses facilitating, in turn, the transmission of several types of microorganisms. Understanding how the mosquito uses its salivary components to circumvent host immunity might help to clarify the mechanisms of transmission of such pathogens and disease establishment. METHODS: Flow cytometry was used to evaluate if increasing concentrations of A. aegypti salivary gland extract (SGE) affects bone marrow-derived DC differentiation and maturation. Lymphocyte proliferation in the presence of SGE was estimated by a colorimetric assay. Western blot and Annexin V staining assays were used to assess apoptosis in these cells. Naïve and memory cells from mosquito-bite exposed mice or OVA-immunized mice and their respective controls were analyzed by flow cytometry. RESULTS: Concentration-response curves were employed to evaluate A. aegypti SGE effects on DC and lymphocyte biology. DCs differentiation from bone marrow precursors, their maturation and function were not directly affected by A. aegypti SGE (concentrations ranging from 2.5 to 40 μg/mL). On the other hand, lymphocytes were very sensitive to the salivary components and died in the presence of A. aegypti SGE, even at concentrations as low as 0.1 μg/mL. In addition, A. aegypti SGE was shown to induce apoptosis in all lymphocyte populations evaluated (CD4+ and CD8+ T cells, and B cells) through a mechanism involving caspase-3 and caspase-8, but not Bim. By using different approaches to generate memory cells, we were able to verify that these cells are resistant to SGE effects. CONCLUSION: Our results show that lymphocytes, and not DCs, are the primary target of A. aegypti salivary components. In the presence of A. aegypti SGE, naïve lymphocyte populations die by apoptosis in a caspase-3- and caspase-8-dependent pathway, while memory cells are selectively more resistant to its effects. The present work contributes to elucidate the activities of A. aegypti salivary molecules on the antigen presenting cell-lymphocyte axis and in the biology of these cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Donor-derived CD8+ cytotoxic T lymphocytes (CTLs) eliminating host leukemic cells mediate curative graft-versus-leukemia (GVL) reactions after allogeneic hematopoietic stem cell transplantation (HSCT). The leukemia-reactive CTLs recognize hematopoiesis-restricted or broadly expressed minor histocompatibility and leukemia-associated peptide antigens that are presented by human leukocyte antigen (HLA) class I molecules on recipient cells. The development of allogeneic CTL therapy in acute myeloid leukemia (AML) is hampered by the poor efficiency of current techniques for generating leukemia-reactive CTLs from unprimed healthy donors in vitro. In this work, a novel allogeneic mini-mixed lymphocyte/leukemia culture (mini-MLLC) approach was established by stimulating CD8+ T cells isolated from peripheral blood of healthy donors at comparably low numbers (i.e. 10e4/well) with HLA class I-matched primary AML blasts in 96-well microtiter plates. Before culture, CD8+ T cells were immunomagnetically separated into CD62L(high)+ and CD62L(low)+/neg subsets enriched for naive/central memory and effector memory cells, respectively. The application of 96-well microtiter plates aimed at creating multiple different responder-stimulator cell compositions in order to provide for the growth of leukemia-reactive CTLs optimized culture conditions by chance. The culture medium was supplemented with interleukin (IL)-7, IL-12, and IL-15. On day 14, IL-12 was replaced by IL-2. In eight different related and unrelated donor/AML pairs with complete HLA class I match, numerous CTL populations were isolated that specifically lysed myeloid leukemias in association with various HLA-A, -B, or -C alleles. These CTLs recognized neither lymphoblastoid B cell lines of donor and patient origin nor primary B cell leukemias expressing the corresponding HLA restriction element. CTLs expressed T cell receptors of single V-beta chain families, indicating their clonality. The vast majority of CTL clones were obtained from mini-MLLCs initiated with CD8+ CD62L(high)+ cells. Using antigen-specific stimulation, multiple CTL populations were amplified to 10e8-10e10 cells within six to eight weeks. The capability of mini-MLLC derived AML-reactive CTL clones to inhibit the engraftment of human primary AML blasts was investigated in the immunodeficient nonobese diabetic/severe combined immune deficient IL-2 receptor common γ-chain deficient (NOD/SCID IL2Rγnull) mouse model. The leukemic engraftment in NOD/SCID IL2Rγnull was specifically prevented if inoculated AML blasts had been pre-incubated in vitro with AML-reactive CTLs, but not with anti-melanoma control CTLs. These results demonstrate that myeloid leukemia-specific CTL clones capable of preventing AML engraftment in mice can be rapidly isolated from CD8+ CD62L(high)+ T cells of healthy donors in vitro. The efficient generation and expansion of these CTLs by the newly established mini-MLLC approach opens the door for several potential applications. First, CTLs can be used within T cell-driven antigen identification strategies to extend the panel of molecularly defined AML antigens that are recognizable by T cells of healthy donors. Second, because these CTLs can be isolated from the stem cell donor by mini-MLLC prior to transplantation, they could be infused into AML patients as a part of the stem cell allograft, or early after transplantation when the leukemia burden is low. The capability of these T cells to expand and function in vivo might require the simultaneous administration of AML-reactive CD4+ T cells generated by a similar in vitro strategy or, less complex, the co-transfer of CD8-depleted donor lymphocytes. To prepare clinical testing, the mini-MLLC approach should now be translated into a protocol that is compatible with good manufacturing practice guidelines.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In allogeneic hematopoietic stem cell transplantation (allo-HSCT), alloreactive T lymphocytes of donor origin mediate the beneficial graft-versus-leukemia effect but also induce graft-versus-host disease (GvHD). Since human leukocyte antigens (HLA) mismatch alleles represent major targets of alloreactive T lymphocytes, patient and donor are usually matched for the class I molecules A, B, C, and for the class II molecules DRB1 and DQB1, in order do reduce the risk of GvHD. The HLA-DPB1 locus, however, is still ignored in donor selection. Interestingly, clinical studies have demonstrated that disparities at HLA-DQB1 alleles as well as distinct HLA DPB1 mismatch constellations do not adversely affect the outcome of allo-HSCT. It has also been shown that HLA class II is predominantly expressed on hematopoietic cells under non-inflammatory conditions. Therefore, this PhD thesis focused on the application of CD4 T cells in adoptive immunotherapy of leukemias.rnIn the first part of this thesis we developed a rapid screening approach to detect T-cell reactivity of donors to single HLA class II mismatch alleles. Allo-HLA reactivity was measured in naive, memory, and entire CD4 T cells isolated from PBMC of healthy donors by flow cytometric cell sorting according to expression of the differentiation markers CD45RA, CD45RO, CD62L, and CCR7. T-cell populations were defined by a single marker to facilitate translation into a clinical-grade allo-depletion procedure. Alloreactivity to single HLA-DR/-DQ mismatch alleles was analyzed in short-term mixed lymphocyte reactions (MLR) in vitro. As standard antigen-presenting cells, we used the HLA-deficient cell line K562 upon electroporation with single HLA-DR/-DQ allele mRNA. We observed in IFN-γ ELISpot assays that allo-HLA-reactivity preferentially derived from subsets enriched for naive compared to memory T cells in healthy donors, irrespective of the HLA mismatch allele. This separation was most efficient if CD62L (P=0.008) or CD45RA (P=0.011) were used as marker. Median numbers of allo-HLA-reactive effector cells were 3.5-fold and 16.6-fold lower in CD62Lneg and CD45RAneg memory CD4 T cells than in entire CD4 T cells, respectively. In allele-specific analysis, alloreactivity to single HLA-DR alleles clearly exceeded that to HLA-DQ alleles. In terms of alloproliferation no significant difference could be observed between individual CD4 T-cell subsets. rnThe second part of this thesis dealed with the generation of allo-HLA-DQ/-DP specific CD4 T cells. Naive CD45RApos CD4 T cells isolated from healthy donor PBMC by flow cytometric cell sorting were stimulated in MLR against single allo-HLA-DQ/-DP alleles transfected into autologous mature monocyte-derived dendritic cells by mRNA electroporation. Rapidly expanding HLA-DQ/-DP mismatch reactive T cells significantly recognized and cytolysed primary acute myeloid leukemia (AML) blasts, fibroblasts (FB) and keratinocytes (KC) in IFN-γ ELISpot and 51chromium release assays if the targets carried the HLA DQ/ DP allele used for T cell priming. While AML blasts were recognized independent of pre-incubating them with IFN-γ, recognition of FB and KC required IFN-γ pre treatment. We further investigated HLA class II expression on hematopoietic and non-hematopoietic cells by flow cytometry. HLA class II was not detected on primary FB, KC, and non-malignant kidney cells, but was expressed at significant levels on primary AML blasts and B-LCL. Up-regulation of HLA class II expression was observed on all cell types after pre-incubation with IFN-γ.rnIn summary, the novel K562-HLA based MLR approach revealed that naive-depleted CD4 T-cell subsets of healthy individuals contain decreased allo-HLA reactivity in vitro. We propose the application of CD45RAneg naive-depleted CD4 T cells as memory T cell therapy, which might be beneficial for HLA-mismatched patients at high-risk of GvHD and low-risk of leukemia relapse. Memory T cells might also provide important post-transplant immune functions against infectious agents. Additionally, the screening approach could be employed as test system to detect donors which have low risks for the emergence of GvHD after allo-HSCT. In the second part of this thesis we developed a protocol for the generation of allo-HLA-DQ/-DP specific CD4 T cell lines, which could be applied in situations in which patient and donor are matched in all HLA alleles but one HLA-DQ/-DP allele with low GvHD potential. These T cells showed lytic activity to leukemia cells while presumably sparing non-hematopoietic tissues under non-inflammatory conditions. Therefore, they might be advantageous for allo-HSCT patients with advanced stage AML after reduced-intensity conditioning and T-cell depletion for the replenishment of anti-leukemic reactivity if the risk for disease relapse is high. rn

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acute myeloid leukaemia (AML) is a cancer of the haematopoietic system, which can in many cases only be cured by haematopoietic stem cell transplantation (HSCT) and donor lymphocyte infusion (DLI) (Burnett et al., 2011). This therapy is associated with the beneficial graft-versus-leukaemia (GvL) effect mediated by transplanted donor T and NK cells that either recognise mismatch HLA molecules or polymorphic peptides, so-called minor histocompatibility antigens, leukaemia-associated or leukaemia-specific antigens in the patient and thus eliminate remaining leukaemic blasts. Nevertheless, the mature donor-derived cells often trigger graft-versus-host disease (GvHD), leading to severe damages in patientsâ epithelial tissue, mainly skin, liver and intestine (Bleakley & Riddell, 2004). Therefore, approaches for the selective mediation of strong GvL effects are needed, also in order to prevent relapse after transplantation. One promising opportunity is the in vitro generation of AML-reactive CD4+ T cells for adoptive transfer. CD4+ T cells are advantageous compared to CD8+ T cells, as HLA class II molecules are under non-inflammatory conditions only expressed on haematopoietic cells; a fact that would minimise GvHD (Klein & Sato, 2000). In this study, naive CD4+ T cells were isolated from healthy donors and were successfully stimulated against primary AML blasts in mini-mixed lymphocyte/leukaemia cell cultures (mini-MLLC) in eight patient/donor pairs. After three to seven weekly restimulations, T cells were shown to produce TH1 type cytokines and to be partially of monoclonal origin according to their TCR Vβ chain usage. Furthermore, they exhibited lytic activity towards AML blasts, which was mediated by the release of granzymes A and B and perforin. The patient/donor pairs used in this study were fully HLA-class I matched, except for one pair, and also matched for HLA-DR and -DQ, whereas -DP was mismatched in one or both alleles, reflecting the actual donor selection procedure in the clinic (Begovich et al., 1992). Antibody blocking experiments suggested that the generated CD4+ T cells were directed against the HLA-DP mismatches, which could be confirmed by the recognition of donor-derived lymphoblastoid cell lines (LCLs) electroporated with the mismatched DP alleles. Under non-inflammatory conditions primary fibroblasts did not express HLA-DP and were thus not recognised, supporting the idea of a safer application of CD4+ T cells regarding induction of GvHD. For the assessment of the biological significance of these T cells, they were adoptively transferred into NSG mice engrafted with human AML blasts, where they migrated to the bone marrow and lymphoid tissue and succeeded in eliminating the leukaemic burden after only one week. Therefore, AML-reactive CD4+ T cells expanded from the naive compartment by in vitro stimulation with primary leukaemia blasts appear to be a potent tool for DLI in HSCT patients and promise to mediate specific GvL effects without causing GvHD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Clinical relevance of tumor infiltrating lymphocytes (TILs) in breast cancer is controversial. Here, we used a tumor microarray including a large series of ductal and lobular breast cancers with long term follow up data, to analyze clinical impact of TIL expressing specific phenotypes and distribution of TILs within different tumor compartments and in different histological subtypes. Methods A tissue microarray (TMA) including 894 ductal and 164 lobular breast cancers was stained with antibodies recognizing CD4, FOXP3, and IL-17 by standard immunohistochemical techniques. Lymphocyte counts were correlated with clinico-pathological parameters and survival. Results CD4+ lymphocytes were more prevalent than FOXP3+ TILs whereas IL-17+ TILs were rare. Increased numbers of total CD4+ and FOXP3+ TIL were observed in ductal, as compared with lobular carcinomas. High grade (G3) and estrogen receptor (ER) negative ductal carcinomas displayed significantly (p < 0.001) higher CD4+ and FOXP3+ lymphocyte infiltration while her2/neu over-expression in ductal carcinomas was significantly (p < 0.001) associated with higher FOXP3+ TIL counts. In contrast, lymphocyte infiltration was not linked to any clinico-pathological parameters in lobular cancers. In univariate but not in multivariate analysis CD4+ infiltration was associated with significantly shorter survival in patients bearing ductal, but not lobular cancers. However, a FOXP3+/CD4+ ratio > 1 was associated with improved overall survival even in multivariate analysis (p = 0.033). Conclusions Ductal and lobular breast cancers appear to be infiltrated by different lymphocyte subpopulations. In ductal cancers increased CD4+ and FOXP3+ TIL numbers are associated with more aggressive tumor features. In survival analysis, absolute numbers of TILs do not represent major prognostic indicators in ductal and lobular breast cancer. Remarkably however, a ratio > 1 of total FOXP3+/CD4+ TILs in ductal carcinoma appears to represent an independent favorable prognostic factor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To gain insights into the molecular mechanisms underlying early host responses to HIV in the CD4(+) T cell target population, we examined gene expression in CD4(+) T cells isolated 24 h after ex vivo HIV infection of lymphocyte aggregate cultures derived from human tonsils. Gene profiling showed a distinct up-regulation of genes related to immune response and response to virus, notably of IFN-stimulated genes (ISGs), irrespective of the coreceptor tropism of the virus. This mostly IFN-alpha-dependent gene signature suggested the involvement of plasmacytoid dendritic cells, a principal component of the antiviral immune response. Indeed, depletion of plasmacytoid dendritic cells before HIV inoculation abrogated transcriptional up-regulation of several ISGs and resulted in increased levels of HIV replication. Treatment with a blocking anti-IFN-alphaR Ab yielded increased HIV replication; conversely, HIV replication was decreased in pDC-depleted cultures treated with IFN-alpha. Among up-regulated ISGs was also TRAIL, indicating a potential role of the IFN signature in apoptosis. However, a blocking anti-TRAIL Ab did not abrogate apoptosis of CD4(+) T cells in CXCR4-tropic HIV-infected cultures, suggesting the involvement of pathways other than TRAIL mediated. We conclude that acute HIV infection of lymphoid tissue results in up-regulation of ISGs in CD4(+) T cells, which induces an anti-HIV state but not apoptosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Stopping antiretroviral therapy in patients with HIV-1 infection can reduce costs and side-effects, but carries the risk of increased immune suppression and emergence of resistance. METHODS: 430 patients with CD4-positive T-lymphocyte (CD4) counts greater than 350 cells per muL, and viral load less than 50 copies per mL were randomised to continued therapy (n=146) or scheduled treatment interruptions (n=284). Median time on randomised treatment was 21.9 months (range 16.4-25.3). Primary endpoints were proportion of patients with viral load less than 50 copies per mL at the end of the trial, and amount of drugs used. Analysis was intention-to-treat. This study is registered at ClinicalTrials.gov with the identifier NCT00113126. FINDINGS: Drug savings in the scheduled treatment interruption group, compared with continuous treatment, amounted to 61.5%. 257 of 284 (90.5%) patients in the scheduled treatment interruption group reached a viral load less than 50 copies per mL, compared with 134 of 146 (91.8%) in the continued treatment group (difference 1.3%, 95% CI-4.3 to 6.9, p=0.90). No AIDS-defining events occurred. Diarrhoea and neuropathy were more frequent with continuous treatment; candidiasis was more frequent with scheduled treatment interruption. Ten patients (2.3%) had resistance mutations, with no significant differences between groups. INTERPRETATION: Drug savings with scheduled treatment interruption were substantial, and no evidence of increased treatment resistance emerged. Treatment-related adverse events were more frequent with continuous treatment, but low CD4 counts and minor manifestations of HIV infection were more frequent with scheduled treatment interruption.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND Patients with Stevens-Johnson syndrome (SJS) or toxic epidermal necrolysis (TEN) are often exposed simultaneously to a few potentially culprit drugs. However, both the standard lymphocyte transformation tests (LTT) with proliferation as the assay end-point as well as skin tests, if done, are often negative. OBJECTIVE As provocation tests are considered too dangerous, there is an urgent need to identify the relevant drug in SJS/TEN and to improve sensitivity of tests able to identify the causative drug. METHODS Fifteen patients with SJS/TEN with the ALDEN score ⥠6 and 18 drug-exposed controls were included. Peripheral blood mononuclear cells (PBMC) were isolated and cultured under defined conditions with drugs. LTT was compared to the following end-points: cytokine levels in cell culture supernatant, number of granzyme B secreting cells by ELISpot and intracellular staining for granulysin and IFNγ in CD3(+) CD4(+), CD3(+) CD8(+) and NKp46(+) cells. To further enhance sensitivity, the effect of IL-7/IL-15 pre-incubation of PBMC was evaluated. RESULTS Lymphocyte transformation tests was positive in only 4/15 patients (sensitivity 27%, CI: 8-55%). Similarly, with granzyme B-ELISpot culprit drugs were positive in 5/15 patients (sensitivity 33%, CI: 12-62%). The expression of granulysin was significantly induced in NKp46(+) and CD3(+) CD4(+) cells (sensitivity 40%, CI: 16-68% and 53%, CI: 27-79% respectively). Cytokine production could be demonstrated in 38%, CI: 14-68% and 43%, CI: 18-71% of patients for IL-2 and IL-5, respectively, and in 55%, CI: 23-83% for IFNγ. Pre-incubation with IL-7/IL-15 enhanced drug-specific response only in a few patients. Specificities of tested assays were in the range of 95 (CI: 80-99%)-100% (CI: 90-100%). CONCLUSIONS AND CLINICAL RELEVANCE Granulysin expression in CD3(+) CD4(+) , Granzyme B-ELISpot and IFNγ production considered together provided a sensitivity of 80% (CI: 52-96%) and specificity of 95% (80-99%). Thus, this study demonstrated that combining different assays may be a feasible approach to identify the causative drug of SJS/TEN reactions; however, confirmation on another group of patients is necessary.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lymphoid organ hypertrophy is a hallmark of localized infection. During the inflammatory response, massive changes in lymphocyte recirculation and turnover boost lymphoid organ cellularity. Intriguingly, the exact nature of these changes remains undefined to date. Here, we report that hypertrophy of Salmonella-infected Peyer's patches (PPs) ensues from a global "shutdown" of lymphocyte egress, which traps recirculating lymphocytes in PPs. Surprisingly, infection-induced lymphocyte sequestration did not require previously proposed mediators of lymphoid organ shutdown including type I interferon receptor and CD69. In contrast, following T-cell receptor-mediated priming, CD69 was essential to selectively block CD4+ effector T-cell egress. Our findings segregate two distinct lymphocyte sequestration mechanisms, which differentially rely on intrinsic modulation of lymphocyte egress capacity and inflammation-induced changes in the lymphoid organ environment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Migration of naïve and activated lymphocytes is regulated by the expression of various molecules such as chemokine receptors and ligands. CD69, the early activation marker of C-type lectin domain family, is also shown to regulate the lymphocyte migration by affecting their egress from the thymus and secondary lymphoid organs. Here, we aimed to investigate the role of CD69 in accumulation of CD4 T cells in intestine using murine models of inflammatory bowel disease. We found that genetic deletion of CD69 in mice increases the expression of the chemokines CCL-1, CXCL-10 and CCL-19 in CD4(+) T cells and/or CD4(-) cells. Efficient in vitro migration of CD69-deficient CD4 T cells toward the chemokine stimuli was the result of increased expression and/or affinity of chemokine receptors. In vivo CD69(-/-) CD4 T cells accumulate in the intestine in higher numbers than B6 CD4 T cells as observed in competitive homing assay, dextran sodium sulphate (DSS)-induced colitis and antigen-specific transfer colitis. In DSS colitis CD69(-/-) CD4 T cell accumulation in colonic lamina propria (cLP) was associated with increased expression of CCL-1, CXCL-10 and CCL-19 genes. Furthermore, treatment of DSS-administrated CD69(-/-) mice with the mixture of CCL-1, CXCL-10 and CCL-19 neutralizing Abs significantly decreased the histopathological signs of colitis. Transfer of OT-IIÃCD69(-/-) CD45RB(high) CD4 T cells into RAG(-/-) hosts induced CD4 T cell accumulation in cLP. This study showed CD69 as negative regulator of inflammatory responses in intestine as it decreases the expression of chemotactic receptors and ligands and reduces the accumulation of CD4 T cells in cLP during colitis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lymph node (LN) stromal cells (LNSCs) form the functional structure of LNs and play an important role in lymphocyte survival and the maintenance of immune tolerance. Despite their broad spectrum of function, little is known about LNSC responses during microbial infection. In this study, we demonstrate that LNSC subsets display distinct kinetics following vaccinia virus infection. In particular, compared with the expansion of other LNSC subsets and the total LN cell population, the expansion of fibroblastic reticular cells (FRCs) was delayed and sustained by noncirculating progenitor cells. Notably, newly generated FRCs were preferentially located in perivascular areas. Viral clearance in reactive LNs preceded the onset of FRC expansion, raising the possibility that viral infection in LNs may have a negative impact on the differentiation of FRCs. We also found that MHC class II expression was upregulated in all LNSC subsets until day 10 postinfection. Genetic ablation of radioresistant stromal cell-mediated Ag presentation resulted in slower contraction of Ag-specific CD4(+) T cells. We propose that activated LNSCs acquire enhanced Ag-presentation capacity, serving as an extrinsic brake system for CD4(+) T cell responses. Disrupted function and homeostasis of LNSCs may contribute to immune deregulation in the context of chronic viral infection, autoimmunity, and graft-versus-host disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The relative deficiency of T helper type 1 (Th1) and cytotoxic T lymphocyte (CTL) responses in early life is associated with an increased susceptibility to infections by intracellular microorganisms. This is likely to reflect a preferential polarization of immature CD4 T cells toward a Th2 rather than a Th1 pattern upon immunization with conventional vaccines. In this report, it is shown that a single immunization within the first week of life with DNA plasmids encoding viral (measles virus hemagglutinin, Sendai virus nucleoprotein) or bacterial (C fragment of tetanus toxin) vaccine antigens can induce adult-like Th1 or mixed Th1/Th2 responses indicated by production of IgG2a vaccine-specific antibodies and preferential secretion of interferon-γ (IFN-γ) compared with interleukin (IL)-5 by antigen-specific T cells, as well as significant CTL responses. However, in spite of this potent Th1-driving capacity, subsequent DNA immunization was not capable of reverting the Th2-biased responses induced after early priming with a recombinant measles canarypox vector. Thus, DNA vaccination represents a novel strategy capable of inducing Th1 or mixed Th1/Th2 and CTL responses in neonates and early life, providing it is performed prior to exposure to Th2-driving conventional vaccine antigens.