967 resultados para Angiogenesis


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: RAGE regulates pro-inflammatory responses in diverse cells and tissues. This study has investigated if RAGE plays a role in immune cell mobilization and choroidal neovascular pathology that is associated with the neovascular form of age-related macular degeneration (nvAMD).

Methods: RAGE null (RAGE−/−) mice and age-matched wild type (WT) control mice underwent laser photocoagulation to generate choroidal neovascularization (CNV) lesions which were then analyzed for morphology, S100B immunoreactivity and inflammatory cell infiltration. The chemotactic ability of bone marrow derived macrophages (BMDMs) towards S100B was investigated.

Results: RAGE expression was significantly increased in the retina during CNV of WT mice (p<0.001). RAGE−/− mice exhibited significantly reduced CNV lesion size when compared to WT controls (p<0.05). S100B mRNA was upregulated in the lasered WT retina but not RAGE−/− retina and S100B immunoreactivity was present within CNV lesions although levels were less when RAGE−/− mice were compared to WT controls. Activated microglia in lesions were considerably less abundant in RAGE−/− mice when compared to WT counterparts (p<0.001). A dose dependent chemotactic migration was observed in BMDMs from WT mice (p<0.05–0.01) but this was not apparent in cells isolated from RAGE−/− mice.

Conclusions: RAGE-S100B interactions appear to play an important role in CNV lesion formation by regulating pro-inflammatory and angiogenic responses. This study highlights the role of RAGE in inflammation-mediated outer retinal pathology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Macrophage function is not restricted to the innate and adaptive immune responses, but also includes host defence, wound healing, angiogenesis and homeostatic processes. Within the spectrum of macrophage activation there are two extremes: M1 classically activated macrophages which have a pro-inflammatory phenotype, and M2 alternatively activated macrophages which are pro-angiogenic and anti-inflammatory. An important property of macrophages is their plasticity to switch from one phenotype to the other and they can be defined in their polarisation state at any point between the two extremes. In order to determine what stage of activation macrophages are in, it is essential to profile various phenotypic markers for their identification. This review describes the angiogenic role for myeloid cells: circulating monocytes, Tie-2 expressing monocytes (TEMs), myeloid-derived suppressor cells (MDSCs), tumour associated macrophages (TAMs), and neutrophils. Each cell type is discussed by phenotype, roles within angiogenesis and possible targets as a cell therapy. In addition, we also refer to our own research on myeloid angiogenic cells (MACs), outlining their ability to induce angiogenesis and their similarities to alternatively activated M2 macrophages. MACs significantly contribute to vascular repair through paracrine mechanisms as they lack the capacity to differentiate into endothelial cells. Since MACs also retain plasticity, phenotypic changes can occur according to disease states and the surrounding microenvironment. This pro-angiogenic potential of MACs could be harnessed as a novel cellular therapy for the treatment of ischaemic diseases, such as diabetic retinopathy, hind limb ischaemia and myocardial infarction; however, caution needs to be taken when MACs are delivered into an inflammatory milieu.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stem and progenitor cells have generated considerable scientific and commercial interest in recent years due to their potential for novel cell therapy for a variety of medical conditions. A highly active research area in the field of regenerative medicine is vascular biology. Blood vessel repair and angiogenesis are key processes with endothelial progenitor cells (EPCs) playing a central role. Clinical trials for ischemic conditions, such as myocardial infarction and peripheral arterial disease, have suggested cell therapies to be feasible, safe, and potentially beneficial. Development of efficient methodologies to deliver EPC-based cytotherapies offers new hope for millions of patients with ischemic conditions. Evidence indicates that EPCs, depending on the subtype, mediate angiogenesis through different mechanisms. Differentiation into endothelium and complete integration into damaged vasculature was the first EPC mechanism to be proposed. However, many studies have demonstrated that vasoregulatory paracrine factor secretion by transplanted cells is also important. Many EPC subsets enhance angiogenesis and promote tissue repair by cytokine release without incorporating into the damaged vasculature. Whatever the mechanism, vascular repair and therapeutic angiogenesis using EPCs represent a realistic treatment option and also provides many commercialization opportunities. This review discusses recent advances in the EPC field whilst recounting relevant patents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To investigate the roles of the CCL2-CCR2 and CX3CL1-CX3CR1 pathways in experimental autoimmune uveoretinitis (EAU)-mediated retinal tissue damage and angiogenesis.

Methods: The C57BL/6J wild-type (WT) and CCL2−/−CX3CR1gfp/gfp (double knockout [DKO]) mice were immunized with IRBP1-20. Retinal inflammation and tissue damage were evaluated clinically and histologically at different days postimmunization (p.i.). Retinal neovascular membranes were evaluated by confocal microscopy of retinal flat mounts, and immune cell infiltration by flow cytometry.

Results: At day 25 p.i., DKO mice had lower clinical and histological scores and fewer CD45highCD11b+ infiltrating cells compared with WT mice. The F4/80+macrophages constitute 40% and 21% and CD11b+Gr-1+Ly6G+ neutrophils constitute 10% and 22% of retinal infiltrating cells in WT and DKO mice, respectively. At the late stages of EAU (day 60–90 p.i.), DKO and WT mice had similar levels of inflammatory score. However, less structural damage and reduced angiogenesis were detected in DKO mice. Neutrophils were rarely detected in the inflamed retina in both WT and DKO mice. Macrophages and myeloid-derived suppressor cells (MDSCs) accounted for 8% and 3% in DKO EAU retina, and 19% and 10% in WT EAU retina; 71% of infiltrating cells were T/B-lymphocytes in DKO EAU retina and 50% in WT EAU retina.

Conclusions: Experimental autoimmune uveoretinitis–mediated retinal tissue damage and angiogenesis is reduced in CCL2−/−CX3CR1gfp/gfp mice. Retinal inflammation is dominated by neutrophils at the acute stage and lymphocytes at the chronic stage in these mice. Our results suggest that CCR2+ and CX3CR1+monocytes are both involved in tissue damage and angiogenesis in EAU.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: The antitumor effects of FK506-binding protein like (FKBPL) and its extracellular role in angiogenesis are well characterized; however, its role in physiological/developmental angiogenesis and the effect of FKBPL ablation has not been evaluated. This is important as effects of some angiogenic proteins are dosage dependent. Here we evaluate the regulation of FKBPL secretion under angiogenic stimuli, as well as the effect of FKBPL ablation in angiogenesis using mouse and zebrafish models.

APPROACH AND RESULTS: FKBPL is secreted maximally by human microvascular endothelial cells and fibroblasts, and this was specifically downregulated by proangiogenic hypoxic signals, but not by the angiogenic cytokines, VEGF or IL8. FKBPL's critical role in angiogenesis was supported by our inability to generate an Fkbpl knockout mouse, with embryonic lethality occurring before E8.5. However, whilst Fkbpl heterozygotic embryos showed some vasculature irregularities, the mice developed normally. In murine angiogenesis models, including the ex vivo aortic ring assay, in vivo sponge assay, and tumor growth assay, Fkbpl(+/-) mice exhibited increased sprouting, enhanced vessel recruitment, and faster tumor growth, respectively, supporting the antiangiogenic function of FKBPL. In zebrafish, knockdown of zFkbpl using morpholinos disrupted the vasculature, and the phenotype was rescued with hFKBPL. Interestingly, this vessel disruption was ineffective when zcd44 was knocked-down, supporting the dependency of zFkbpl on zCd44 in zebrafish.

CONCLUSIONS: FKBPL is an important regulator of angiogenesis, having an essential role in murine and zebrafish blood vessel development. Mouse models of angiogenesis demonstrated a proangiogenic phenotype in Fkbpl heterozygotes.