986 resultados para VIRULENCE


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A modified sand–liquid culture method facilitated easy visualisation of the primary life cycle stages of Plasmodiophora brassicae within clean root hairs of the Arabidopsis host. Pathogen penetration occurred from day 4 onwards and then primary plasmodia developed within the host root. Several Arabidopsis ecotypes tested in varying growth conditions showed differences in disease expression. Defined growth cabinet conditions were found most suitable for studying disease progression in the ecotypes and for achieving uniform infection and disease development. Arabidopsis ecotypes Ta-0 and Tsu-0 known to be partially resistant to a German single-spore isolate of P. brassicae were susceptible to an Australian (Victorian) field population of P. brassicae. The European clubroot differential test was used to confirm virulence and describe the pathotype of the Victorian field population. Knowledge of the interaction of an Australian population of P. brassicae with its host will provide valuable information on a disease which is very difficult to control.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The virulence of the malaria parasite, Plasmodium falciparum, is due in large part to the way in which it modifies the membrane of its erythrocyte host. In this work we have used confocal microscopy and fluorescence recovery after photo-bleaching to examine the lateral mobility of host membrane proteins in erythrocytes infected with P falciparum at different stages of parasite growth. The erythrocyte membrane proteins band 3 and glycophorin show a marked decrease in mobility during the trophozoite stage of growth. Erythrocytes infected with a parasite strain that does not express the knob-associated histidine-rich protein show similar effects, indicating that this parasite protein does not contribute to the immobilization of the host proteins. Erythrocytes infected with ring-stage parasites exhibit intermediate mobility indicating that the parasite is able to modify its host prior to its active feeding stage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lactoferrin (Lf) is present in milk and gland secretions and serve as an antimicrobial function. Insufficient amounts of Lf in some secretions also appear to correlate with certain health problems. Protection against gastroenteritis is the most likely biologically relevant activity of lactoferrin. Multiple in vitro and animal studies have shown a protective effect of lactoferrin on infections with enteric microorganisms, including rotavirus, Giardia, Shigella, Salmonella and the diarrheagenic Escherichia coli. Lactoferrin has two major effects on enteric pathogens: it inhibits growth and it impairs function of surface expressed virulence factors thereby decreasing their ability to adhere or to invade mammalian cells. Lf also inhibits several species of fungi and certain parasites. This review covers the role of Lf in clearing the parasitic infections. The mechanism by which lactoferrin inhibits some parasites may be via stimulation of the process of phagocytosis, whereby immune cells engulf and digest foreign organisms. Trichomonas vaginalis is a protozoan responsible for the number one, non-viral sexually transmitted disease. In this review, we also discussed the role of Lf in cervical infections.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Genetically engineered vaccinia viruses are potential candidates for vaccine construction. This study investigated the vaccinia virus B15R gene, which is involved in modulating virulence. Genetically engineered vaccinia viruses were constructed to evaluate the influence of the B15R gene on the ability of these viruses to induce an immune response against a foreign antigen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to survive and promote its virulence the malaria parasite must export hundreds of its proteins beyond an encasing vacuole and membrane into the host red blood cell. In the last few years, several major advances have been made that have significantly contributed to our understanding of this export process. These include: (i) the identification of sequences that direct protein export (a signal sequence and a motif termed PEXEL), which have allowed predictions of the exportomes of Plasmodium species that are the cause of malaria, (ii) the recognition that the fate of proteins destined for export is already decided within the parasite's endoplasmic reticulum and involves the PEXEL motif being recognized and cleaved by the aspartic protease plasmepsin V and (iii) the discovery of the Plasmodium translocon of exported proteins (PTEX) that is responsible for the passage of proteins across the vacuolar membrane. We review protein export in Plasmodium and these latest developments in the field that have now provided a new platform from which trafficking of malaria proteins can be dissected.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is somewhat paradoxical that the malaria parasite’s survival strategy involves spending almost all of its blood-stage existence residing behind a two-membrane barrier in a host red blood cell, yet giving considerable attention to exporting parasite-encoded proteins back across these membranes. These exported proteins are thought to play diverse roles and are crucial in pathogenic processes, such as re-modelling of the erythrocyte cytoskeleton and mediating the export of a major virulence protein known as Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1), and in metabolic processes such as nutrient uptake and solute exchange. Despite these varied roles most exported proteins have at least one common link; they share a trafficking pathway that begins with entry into the endoplasmic reticulum and concludes with passage across the vacuole membrane via a proteinaceous translocon known as the Plasmodium translocon of exported proteins (PTEX). In this commentary we review recent advances in our understanding of this export pathway and suggest several models by which different aspects of the process may be interconnected.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A short motif termed Plasmodium export element (PEXEL) or vacuolar targeting signal (VTS) characterizes Plasmodium proteins exported into the host cell. These proteins mediate host cell modifications essential for parasite survival and virulence. However, several PEXEL-negative exported proteins indicate that the currently predicted malaria exportome is not complete and it is unknown whether and how these proteins relate to PEXEL-positive export. Here we show that the N-terminal 10 amino acids of the PEXEL-negative exported protein REX2 (ring-exported protein 2) are necessary for its targeting and that a single-point mutation in this region abolishes export. Furthermore we show that the REX2 transmembrane domain is also essential for export and that together with the N-terminal region it is sufficient to promote export of another protein. An N-terminal region and the transmembrane domain of the unrelated PEXEL-negative exported protein SBP1 (skeleton-binding protein 1) can functionally replace the corresponding regions in REX2, suggesting that these sequence features are also present in other PEXEL-negative exported proteins. Similar to PEXEL proteins we find that REX2 is processed, but in contrast, detect no evidence for N-terminal acetylation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To survive within its host erythrocyte, Plasmodium falciparum must export hundreds of proteins across both its parasite plasma membrane and surrounding parasitophorous vacuole membrane, most of which are likely to use a protein complex known as PTEX (Plasmodium translocon of exported proteins). PTEX is a putative protein trafficking machinery responsible for the export of hundreds of proteins across the parasitophorous vacuole membrane and into the human host cell. Five proteins are known to comprise the PTEX complex, and in this study, three of the major stoichiometric components are investigated including HSP101 (a AAA+ ATPase), a protein of no known function termed PTEX150, and the apparent membrane component EXP2. We show that these proteins are synthesized in the preceding schizont stage (PTEX150 and HSP101) or even earlier in the life cycle (EXP2), and before invasion these components reside within the dense granules of invasive merozoites. From these apical organelles, the protein complex is released into the host cell where it resides with little turnover in the parasitophorous vacuole membrane for most of the remainder of the following cell cycle. At this membrane, PTEX is arranged in a stable macromolecular complex of >1230 kDa that includes an ∼600-kDa apparently homo-oligomeric complex of EXP2 that can be separated from the remainder of the PTEX complex using non-ionic detergents. Two different biochemical methods undertaken here suggest that PTEX components associate as EXP2-PTEX150-HSP101, with EXP2 associating with the vacuolar membrane. Collectively, these data support the hypothesis that EXP2 oligomerizes and potentially forms the putative membrane-spanning pore to which the remainder of the PTEX complex is attached.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coevolution is evolution in one species in response to selection imposed by a second species, followed by evolution in the second species in response to reciprocal selection imposed by the first species. Although reciprocal selection is a prerequisite of coevolution, it has seldom been documented in natural populations. We examined the feasibility of reciprocal selection in a simple host‐parasite system consisting of feral pigeons (Columba livia) and their Ischnoceran feather lice (Phthiraptera: Insecta). We tested for a selective effect of parasites on hosts with experimentally altered defenses and for a selective effect of host defense on a component of parasite escape. Previous work indicates that pigeons control lice through efficient preening, while lice escape from preening using complex avoidance behavior. Our results show that feral pigeons with impaired preening, owing to slight bill deformities, have higher louse loads than pigeons with normal bills. We use a controlled experiment to show that high louse loads reduce the survival of pigeons, suggesting that lice select for efficient preening and against bill deformities. In a reciprocal experiment, we demonstrate that preening with a normal bill selects for small body size in lice, which may facilitate their escape from preening. The results of this study verify a crucial element of coevolutionary theory by identifying likely targets of reciprocal phenotypic selection between host and parasite.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1We censused ectoparasite populations of adult and nestling swifts over the course of the host's breeding season. Nearly all of the birds were infested with chewing lice and two-thirds of the nests were infested with louse flies. Feather mites were observed but not quantified.2Lice and louse flies both showed aggregated distributions among hosts. Louse eggs, hatched lice and adult louse flies had negative binomial distributions, whereas the aggregated distribution of louse fly pupae was not adequately described by negative binomial or Poisson models.3Transmission of lice from parents to offspring was documented. A comparison of the age structure of lice on parents and offspring indicated that most transmission was by nymphal lice.4Host reproductive success and survival appeared to be independent of the number of lice or louse flies. Neither parasite correlated with the number, body mass, or date of fledging of young birds, nor with the overwinter survival of adults. We caution, however, that experimental manipulations of parasite load are required for a definitive test of the impact of ectoparasites on evolutionary fitness components.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During the blood stages of malaria, several hundred parasite-encoded proteins are exported beyond the double-membrane barrier that separates the parasite from the host cell cytosol. These proteins have a variety of roles that are essential to virulence or parasite growth. There is keen interest in understanding how proteins are exported and whether common machineries are involved in trafficking the different classes of exported proteins. One potential trafficking machine is a protein complex known as the Plasmodium translocon of exported proteins (PTEX). Although PTEX has been linked to the export of one class of exported proteins, there has been no direct evidence for its role and scope in protein translocation. Here we show, through the generation of two parasite lines defective for essential PTEX components (HSP101 or PTEX150), and analysis of a line lacking the non-essential component TRX2 (ref. 12), greatly reduced trafficking of all classes of exported proteins beyond the double membrane barrier enveloping the parasite. This includes proteins containing the PEXEL motif (RxLxE/Q/D) and PEXEL-negative exported proteins (PNEPs). Moreover, the export of proteins destined for expression on the infected erythrocyte surface, including the major virulence factor PfEMP1 in Plasmodium falciparum, was significantly reduced in PTEX knockdown parasites. PTEX function was also essential for blood-stage growth, because even a modest knockdown of PTEX components had a strong effect on the parasite's capacity to complete the erythrocytic cycle both in vitro and in vivo. Hence, as the only known nexus for protein export in Plasmodium parasites, and an essential enzymic machine, PTEX is a prime drug target.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite Candida species are often human commensals isolated from various oral sites such as: tongue, cheek and palatal mucosa plus subgingival region, there are some properties linked to the organism commonly known as virulence factors which confer them the ability to produce disease. Oral candidiasis is one of the main oral manifestations reported in literature related to kidney transplant patients. The objectives of the present study were to identify and investigate virulence factors of yeasts isolated from the oral cavity of kidney transplant recipients admitted at the Hospital Universitário Onofre Lopes, in Natal RN. Seventy Candida species isolated from 111 kidney transplant recipients were investigated in this study. Identification of the isolates was performed by using the evidence of germ tube formation, hypertonic broth, tolerance to grow at 42°C, micromorphology and biochemical profiles. We observed a high rate of isolation of yeasts from the oral cavity of kidney transplant recipients (63.1%) being C. albicans was the most prevalent species. Oral candidiasis was diagnosed in 14.4% of transplant recipients. We evaluated virulence properties of the isolates regarding to: biofilm formation on polystyrene microplates as well as XTT reduction, adherence to acrylic resin and human buccal epithelial cells and proteinase activity. Most isolates were able to form biofilm by the method of adhesion to polystyrene. All isolates of Candida spp. remained viable during biofilm formation when analyzed by the method of XTT reduction. The number of CFU attached to the acrylic resin suggested high adherence for C. parapsilosis. C. albicans isolates showed higher median adherence to human buccal epithelial cells than non-C. albicans Candida isolates. Nevertheless, this difference was not statistically significant. C. dubliniensis showed low ability to adhere to plastic and epithelial cells and biofilm formation. Proteolytic activity was observed for all the isolates investigated, including the unique isolate of C. dubliniensis. There was a statistically significant association between proteinase production and the presence of oral candidiasis. Studies related to oral candidiasis in renal transplant recipients are limited to clinical and epidemiological data, but investigations concerning Candida spp. virulence factor for this group of individuals are still scarce. We emphasize the importance of studies related to virulence factors of yeasts isolated from this population to contribute to the knowledge of microbiological aspects of oral candidiasis

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vulvovaginal candidiasis (VVC) is one of the most common causes of vaginitis and affects about 75% of women of reproductive age. The majority of cases (80 to 90%) are due to C. albicans, the most virulent species of the genus Candida. Virulence attributes are scarcely investigated and the source of infection remains uncertain. Objective: This study aimed to evaluate the virulence factors and genotypes of clinical isolates of C. albicans sequentially obtained from the anus and vagina of patients with sporadic and recurrent VVC. Materials and methods: We analyzed 62 clinical isolates of C. albicans (36 vaginal and 26 anal strains). Direct examination of vaginal and anal samples and colony forming units (CFU) counts were performed. Yeasts were identified using the chromogenic media CHROMagar Candida® and by classical methodology, and phenotypically characterized regarding to virulence factors, including the ability to adhere to epithelial cells, proteinase activity, morphogenesis and biofilm formation. The genotypes of the strains were investigated with ABC genotyping, microsatellite genotyping with primer M13 and RAPD. Results: We found 100% agreement between direct examination and culture of vaginal samples. Filamentous forms were present in most of the samples of vaginal secretion, which presented CFU counts significantly higher than the samples of anal secretion. There was no statistically significant difference between virulence factors of infecting vaginal isolates and those presented by colonizing anal isolates; as well as for the comparison of the vaginal isolates from patients with different clinical conditions (sporadic or recurrent VVC). There was a decrease in the ability to adhere to HBEC, morphogenesis and biofilm formation of the vaginal isolates during the progress of infection. There was an association between the ability to express different virulence factors and the clinical manifestations presented by the patients. Genotype A was the most prevalent (93.6%), followed by genotype C (6.4%). We found maintenance of the same ABC genotype and greater prevalence of microevolution for the vaginal strains of C. albicans sequentially obtained. Vaginal and anal isolates of C. albicans obtained simultaneously from the same patient presented the same ABC genotype and high genetic relatedness. Conclusion: It is noteworthy that the proliferation of yeast and bud-to-hypha transition are important for the establishment of CVV. The expression of virulence factors is important for the pathogenesis of VVC, although it does not seem to be determinant in the transition from colonization to infection or to the installation of recurrent condition. Genotype A seems to be dominant over the others in both vaginal and anal isolates of patients with VVC. The most common scenario was microevolution of the strains of C. albicans in the vaginal environment. It is suggested that the anal reservoir constituted a possible source of vaginal infection, in most cases assessed

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Candida albicans is a diploid yeast that in some circumstances may cause oral or oropharyngeal infections. The investigation of natural products is mandatory for the discovery of new targets for antifungal drugs development. This study aimed to determine the genotypes of 48 clinical isolates of C. albicans obtained from the oral cavity of kidney transplant patients from two distinct geographic regions of Brazil. In addition, we investigated three virulence factors in vitro: phospholipase activity, morphogenesis and the ability to evade from polymorphonuclear neutrophils. The expression of these virulence factors in vitro was also investigated in the presence of the crude extract of Eugenia uniflora. The genotype A was the most prevalent (30 isolates; 62.5%), followed by genotype C (15 isolates; 31.5%) and genotype B (3 isolates; 6.25%). When microsatellite technique with primer M13 was applied, 80% of the isolates from the South were placed within the same cluster. All Genotype C strains were grouped together within two different clusters. Genotype C was considered more resistant to PMNs attack than genotypes A and B. Strains isolated from the South of Brazil showed higher ability to combat PMNs phagocytosis. We found a high rate of genotype C strains isolated from the oral cavity of this group of patients. The crude extract of E. uniflora inhibited proper hypha formation and phagocytosis by PMNs, but had no significant effect on phospholipase activity. This study characterized oral C. albicans strains isolated from kidney transplant recipients and will contribute for the better understanding of the pathogenesis and alternative therapeutics for oral candidiasis