893 resultados para Production system


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we clearly demonstrate that changes in oceanic nutrients are a first order factor in determining changes in the primary production of the northwest European continental shelf on time scales of 5–10 yr. We present a series of coupled hydrodynamic ecosystem modelling simulations, using the POLCOMS-ERSEM system. These are forced by both reanalysis data and a single example of a coupled ocean-atmosphere general circulation model (OA-GCM) representative of possible conditions in 2080–2100 under an SRES A1B emissions scenario, along with the corresponding present day control. The OA-GCM forced simulations show a substantial reduction in surface nutrients in the open-ocean regions of the model domain, comparing future and present day time-slices. This arises from a large increase in oceanic stratification. Tracer transport experiments identify a substantial fraction of on-shelf water originates from the open-ocean region to the south of the domain, where this increase is largest, and indeed the on-shelf nutrient and primary production are reduced as this water is transported on-shelf. This relationship is confirmed quantitatively by comparing changes in winter nitrate with total annual nitrate uptake. The reduction in primary production by the reduced nutrient transport is mitigated by on-shelf processes relating to temperature, stratification (length of growing season) and recycling. Regions less exposed to ocean-shelf exchange in this model (Celtic Sea, Irish Sea, English Channel, and Southern North Sea) show a modest increase in primary production (of 5–10%) compared with a decrease of 0–20% in the outer shelf, Central and Northern North Sea. These findings are backed up by a boundary condition perturbation experiment and a simple mixing model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ocean plays an important role in regulating the climate, acting as a sink for carbon dioxide, perturbing the carbonate system and resulting in a slow decrease of seawater pH. Understanding the dynamics of the carbonate system in shelf sea regions is necessary to evaluate the impact of Ocean Acidification (OA) in these societally important ecosystems. Complex hydrodynamic and ecosystem coupled models provide a method of capturing the significant heterogeneity of these areas. However rigorous validation is essential to properly assess the reliability of such models. The coupled model POLCOMS–ERSEM has been implemented in the North Western European shelf with a new parameterization for alkalinity explicitly accounting for riverine inputs and the influence of biological processes. The model has been validated in a like with like comparison with North Sea data from the CANOBA dataset. The model shows good to reasonable agreement for the principal variables, physical (temperature and salinity), biogeochemical (nutrients) and carbonate system (dissolved inorganic carbon and total alkalinity), but simulation of the derived variables, pH and pCO2, are not yet fully satisfactory. This high uncertainty is attributed mostly to riverine forcing and primary production. This study suggests that the model is a useful tool to provide information on Ocean Acidification scenarios, but uncertainty on pH and pCO2 needs to be reduced, particularly when impacts of OA on ecosystem functions are included in the model systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The rise of food security up international political, societal and academic agendas has led to increasing interest in novel means of improving primary food production and reducing waste. There are however, also many 'post-farm gate' activities that are critical to food security, including processing, packaging, distributing, retailing, cooking and consuming. These activities all affect a range of important food security elements, notably availability, affordability and other aspects of access, nutrition and safety. Addressing the challenge of universal food security, in the context of a number of other policy goals (e.g. social, economic and environmental sustainability), is of keen interest to a range of UK stakeholders but requires an up-to-date evidence base and continuous innovation. An exercise was therefore conducted, under the auspices of the UK Global Food Security Programme, to identify priority research questions with a focus on the UK food system (though the outcomes may be broadly applicable to other developed nations). Emphasis was placed on incorporating a wide range of perspectives ('world views') from different stakeholder groups: policy, private sector, non-governmental organisations, advocacy groups and academia. A total of 456 individuals submitted 820 questions from which 100 were selected by a process of online voting and a three-stage workshop voting exercise. These 100 final questions were sorted into 10 themes and the 'top' question for each theme identified by a further voting exercise. This step also allowed four different stakeholder groups to select the top 7-8 questions from their perspectives. Results of these voting exercises are presented. It is clear from the wide range of questions prioritised in this exercise that the different stakeholder groups identified specific research needs on a range of post-farm gate activities and food security outcomes. Evidence needs related to food affordability, nutrition and food safety (all key elements of food security) featured highly in the exercise. While there were some questions relating to climate impacts on production, other important topics for food security (e.g. trade, transport, preference and cultural needs) were not viewed as strongly by the participants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Baltic Sea is a unique environment as the largest body of brackish water in the world. Acidification of the surface oceans due to absorption of anthropogenic CO2 emissions is an additional stressor facing the pelagic community of the already challenging Baltic Sea. To investigate its impact on trace gas biogeochemistry, a large-scale mesocosm experiment was performed off Tvärminne Research Station, Finland in summer 2012. During the second half of the experiment, dimethylsulphide (DMS) concentrations in the highest fCO2 mesocosms (1075–1333 μatm) were 34 % lower than at ambient CO2 (350 μatm). However the net production (as measured by concentration change) of seven halocarbons analysed was not significantly affected by even the highest CO2 levels after 5 weeks exposure. Methyl iodide (CH3I) and diiodomethane (CH2I2) showed 15 % and 57 % increases in mean mesocosm concentration (3.8 ± 0.6 pmol L−1 increasing to 4.3 ± 0.4 pmol L−1 and 87.4 ± 14.9 pmol L−1 increasing to 134.4 ± 24.1 pmol L−1 respectively) during Phase II of the experiment, which were unrelated to CO2 and corresponded to 30 % lower Chl-ɑ concentrations compared to Phase I. No other iodocarbons increased or showed a peak, with mean chloroiodomethane (CH2ClI) concentrations measured at 5.3 (± 0.9) pmol L−1 and iodoethane (C2H5I) at 0.5 (± 0.1) pmol L−1. Of the concentrations of bromoform (CHBr3; mean 88.1 ± 13.2 pmol L−1), dibromomethane (CH2Br2; mean 5.3 ± 0.8 pmol L−1) and dibromochloromethane (CHBr2Cl, mean 3.0 ± 0.5 pmol L−1), only CH2Br2 showed a decrease of 17 % between Phases I and II, with CHBr3 and CHBr2Cl showing similar mean concentrations in both Phases. Outside the mesocosms, an upwelling event was responsible for bringing colder, high CO2, low pH water to the surface starting on day t16 of the experiment; this variable CO2 system with frequent upwelling events implies the community of the Baltic Sea is acclimated to regular significant declines in pH caused by up to 800 μatm fCO2. After this upwelling, DMS concentrations declined, but halocarbon concentrations remained similar or increased compared to measurements prior to the change in conditions. Based on our findings, with future acidification of Baltic Sea waters, biogenic halocarbon emissions are likely to remain at similar values to today, however emissions of biogenic sulphur could significantly decrease from this region.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Regional seas are potentially highly vulnerable to climate change, yet are the most directly societally important regions of the marine environment. The combination of widely varying conditions of mixing, forcing, geography (coastline and bathymetry) and exposure to the open-ocean makes these seas subject to a wide range of physical processes that mediates how large scale climate change impacts on these seas’ ecosystems. In this paper we explore the response of five regional sea areas to potential future climate change, acting via atmospheric, oceanic and terrestrial vectors. These include the Barents Sea, Black Sea, Baltic Sea, North Sea, Celtic Seas, and are contrasted with a region of the Northeast Atlantic. Our aim is to elucidate the controlling dynamical processes and how these vary between and within these seas. We focus on primary production and consider the potential climatic impacts on: long term changes in elemental budgets, seasonal and mesoscale processes that control phytoplankton’s exposure to light and nutrients, and briefly direct temperature response. We draw examples from the MEECE FP7 project and five regional model systems each using a common global Earth System Model as forcing. We consider a common analysis approach, and additional sensitivity experiments. Comparing projections for the end of the 21st century with mean present day conditions, these simulations generally show an increase in seasonal and permanent stratification (where present). However, the first order (low- and mid-latitude) effect in the open ocean projections of increased permanent stratification leading to reduced nutrient levels, and so to reduced primary production, is largely absent, except in the NE Atlantic. Even in the two highly stratified, deep water seas we consider (Black and Baltic Seas) the increase in stratification is not seen as a first order control on primary production. Instead, results show a highly heterogeneous picture of positive and negative change arising from complex combinations of multiple physical drivers, including changes in mixing, circulation and temperature, which act both locally and non-locally through advection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ziebuhr W, Dietrich K, Trautmann M, Wilhelm M. Institut für Molekulare Infektionsbiologie, Würzburg, Germany. w.ziebuhr@mail.uni-wuerzburg.de During two clinical courses of shunt-associated meningitis in a 3-month-old child, five multiresistant S. epidermidis isolates were obtained and analyzed with regard to biofilm production and antibiotic susceptibility. Three S. epidermidis strains, which were initially isolated from the cerebrospinal fluid, produced biofilms on polystyrene tissue culture plates. Following antibiotic treatment and subsequent exchange of the shunt system, sterilization of the CSF was achieved. However, after three weeks a relapse of the infection occurred. The two S. epidermidis isolates obtained now were biofilm negative, but showed an identical resistance pattern as those from the previous infection, except that resistance to rifampicin and increased mininal inhibitory concentrations of aminoglycoside antibiotics had emerged. DNA fingerprinting by PFGE indicated the clonal origin of all isolates. However, some DNA rearrangements and differences in the IS256-specific hybridization patterns could be identified in the isolates from the second infection period that led to altered biofilm formation and increased expression of aminoglycoside resistance traits. The data evidence that variation of biofilm expression occurs in vivo during an infection and highlight the extraordinary genome flexibility of pathogenic S. epidermidis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract
Thiazolidinediones (TZDs) have been used for the treatment of hyperglycaemia in type 2 diabetes for the past 10 years. They may delay the development of type 2 diabetes in individuals at high risk of developing the condition, and have been shown to have potentially beneficial effects on cardiovascular risk factors. TZDs act as agonists of peroxisome proliferator-activated receptor-gamma (PPAR-gamma) primarily in adipose tissue. PPAR-gamma receptor activation by TZDs improves insulin sensitivity by promoting fatty acid uptake into adipose tissue, increasing production of adiponectin and reducing levels of inflammatory mediators such as tumour necrosis factor-alpha (TNF-alpha), plasminogen activator inhibitor-1(PAI-1) and interleukin-6 (IL-6). Clinically, TZDs have been shown to reduce measures of atherosclerosis such as carotid intima-media thickness (CIMT). However, in spite of beneficial effects on markers of cardiovascular risk, TZDs have not been definitively shown to reduce cardiovascular events in patients, and the safety of rosiglitazone in this respect has recently been called into question. Dual PPAR-alpha/gamma agonists may offer superior treatment of insulin resistance and cardioprotection, but their safety has not yet been assured

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PEGS (Production and Environmental Generic Scheduler) is a generic production scheduler that produces good schedules over a wide range of problems. It is centralised, using search strategies with the Shifting Bottleneck algorithm. We have also developed an alternative distributed approach using software agents. In some cases this reduces run times by a factor of 10 or more. In most cases, the agent-based program also produces good solutions for published benchmark data, and the short run times make our program useful for a large range of problems. Test results show that the agents can produce schedules comparable to the best found so far for some benchmark datasets and actually better schedules than PEGS on our own random datasets. The flexibility that agents can provide for today's dynamic scheduling is also appealing. We suggest that in this sort of generic or commercial system, the agent-based approach is a good alternative.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The one-pot synthesis of the fungicide fenpropimorph has been achieved using two different synthetic strategies in an ionic liquid. The first pathway consists of a Heck coupling followed by reductive amination; the second pathway consists of an aldol condensation followed by hydrogenation/reductive amination. Homogeneous and heterogeneous palladium catalysts have been utilised in the ionic liquid to provide a catalyst/solvent system that is suitable for recycling and process optimisation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The organisation of the human neuromuscular-skeletal system allows an extremely wide variety of actions to be performed, often with great dexterity. Adaptations associated with skill acquisition occur at all levels of the neuromuscular-skeletal system although all neural adaptations are inevitably constrained by the organisation of the actuating apparatus (muscles and bones). We quantified the extent to which skill acquisition in an isometric task set is influenced by the mechanical properties of the muscles used to produce the required actions. Initial performance was greatly dependent upon the specific combination of torques required in each variant of the experimental task. Five consecutive days of practice improved the performance to a similar degree across eight actions despite differences in the torques required about the elbow and forearm. The proportional improvement in performance was also similar when the actions were performed at either 20 or 40% of participants' maximum voluntary torque capacity. The skill acquired during practice was successfully extrapolated to variants of the task requiring more torque than that required during practice. We conclude that while the extent to which skill can be acquired in isometric actions is independent of the specific combination of joint torques required for target acquisition, the nature of the kinetic adaptations leading to the performance improvement in isometric actions is influenced by the neural and mechanical properties of the actuating muscles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel 5-aminolevulinic acid (ALA)-containing microparticulate system was produced recently, based on incorporation of ALA into particles prepared from a suppository base that maintains drug stability during storage and melts at skin temperature to release its drug payload. The novel particulate system was applied to the skin of living animals, followed by study of protoporphyrin IX (PpIX) production. The effect of formulating the microparticles in different vehicles was investigated and also the phototoxicity of the PpIX produced using a model tumour. Particles formulated in propylene glycol gels (10% w/w ALA loading) generated the highest peak PpIX fluorescence levels in normal mouse skin. Peak PpIX levels induced in skin overlying subcutaneously implanted WiDr tumours were significantly lower than in normal skin for both the 10% w/w ALA microparticles alone and the 10% w/w ALA microparticles in propylene glycol gels during continuous 12 h applications. Tumours not treated with photodynamic therapy continued to grow over the 17 days of the anti-tumour study. However, those treated with 12 h applications of either the 10% w/w ALA microparticles alone or the 10% w/w ALA microparticles in propylene glycol gel followed by a single laser irradiation showed no growth. The gel formulation performed slightly better once again, reducing the tumour growth rate by approximately 105%, compared with the 89% reduction achieved using particles alone. Following the promising results obtained in this study, work is now going on to prepare particle-loaded gels under GMP conditions with the aim of initiating an exploratory clinical trial.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Interleukin-17A (IL-17A) is the founding member of a novel family of inflammatory cytokines that plays a critical role in the pathogenesis of many autoimmune diseases, including multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE). IL-17A signals through its receptor, IL-17RA, which is expressed in many peripheral tissues; however, expression of IL-17RA in the central nervous system (CNS) and its role in CNS inflammation are not well understood. Methods: EAE was induced in C57Bl/6 mice by immunization with myelin oligodendroglial glycoprotein. IL-17RA expression in the CNS was compared between control and EAE mice using RT-PCR, in situ hybridization, and immunohistochemistry. Cell-type specific expression was examined in isolated astrocytic and microglial cell cultures. Cytokine and chemokine production was measured in IL-17A treated cultures to evaluate the functional status of IL-17RA. Results: Here we report increased IL-17RA expression in the CNS of mice with EAE, and constitutive expression of functional IL-17RA in mouse CNS tissue. Specifically, astrocytes and microglia express IL-17RA in vitro, and IL-17A treatment induces biological responses in these cells, including significant upregulation of MCP-1, MCP-5, MIP-2 and KC chemokine secretion. Exogenous IL-17A does not significantly alter the expression of IL-17RA in glial cells, suggesting that upregulation of chemokines by glial cells is due to IL-17A signaling through constitutively expressed IL-17RA. Conclusion: IL-17RA expression is significantly increased in the CNS of mice with EAE compared to healthy mice, suggesting that IL-17RA signaling in glial cells can play an important role in autoimmune inflammation of the CNS and may be a potential pathway to target for therapeutic interventions. © 2009 Sarma et al; licensee BioMed Central Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The activity and nature (i e heterogeneous and/or homogeneous) of catalysts based on CsF supported on alpha-Al2O3 were investigated for the transesterification of vegetable oil with methanol. The effect of the activation temperature, CsF loading and the reusability in a recirculating reactor were first studied CsF/alpha-Al2O3 exhibited the highest activity for a CsF loading of 0 6 mmol/g and when activated at 120 degrees C An important aspect of this study is the effect of CsF leaching into the reaction mixture, which is attributed to the high solubility of CsF in methanol, leading to a complete loss of activity after one run It was Identified that the activity of the catalyst resulted from a synergy between alumina and dissolved CsF, the presence of both compounds being absolutely necessary to observe any conversion The use of an alumina with a higher surface area resulted in a far greater reaction rate, showing that the concentration of surface site on the oxide (probably surface hydroxyl) was rate-limiting in the case of the experiments using the low surface area alpha-Al2O3 This work emphasizes that combined homogeneous-heterogeneous catalytic systems made from the blending of the respective catalysts can be used to obtain high conversion of vegetable oil to biodiesel. Despite the homogeneous/heterogeneous dual character, such a catalytic system may prove valuable in developing a simple and cost-effective continuous catalytic process for biodiesel production (C) 2010 Elsevier B V All rights reserved

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plasma diagnostics of atmospheric plasmas is a key tool in helping to understand processing performance issues. This paper presents an electrical, optical and thermographic imaging study of the PlasmaStream atmospheric plasma jet system. The system was found to exhibit three operating modes; one constricted/localized plasma and two extended volume plasmas. At low power and helium flows the plasma is localized at the electrodes and has the electrical properties of a corona/filamentary discharge with electrical chaotic temporal structure. With increasing discharge power and helium flow the plasma expands into the volume of the tube, becoming regular and homogeneous in appearance. Emission spectra show evidence of atomic oxygen, nitric oxide and the hydroxyl radical production. Plasma activated gas temperature deduced from the rotational temperature of nitrogen molecules was found to be of order of 400 K: whereas thermographic imaging of the quartz tube yielded surface temperatures between 319 and 347 K.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract: The potential variance in feedstock costs can have signifi cant implications for the cost of a biofuel and the fi nancial viability of a biofuel facility. This paper employs the Grange Feed Costing Model to assess the cost of on-farm biomethane production using grass silages produced under a range of management scenarios. These costs were compared with the cost of wheat grain and sugarbeet roots for ethanol production at an industrial scale. Of the three feedstocks examined, grass silage represents the cheapest feedstock per GJ of biofuel produced. At a production cost of €27/tonne (t) feedstock (or €150/t volatile solids (VS)), the feedstock production cost of grass silage per gigajoule (GJ) of biofuel (€12.27) is lower than that of sugarbeet (€16.82) and wheat grain (€18.61). Grass biomethane is also the cheapest biofuel when grass silage is costed at the bottom quartile purchase price of silage of €19/t (€93/t VS). However, when considering the production costs (full-costing) of the three feedstocks, the total cost of grass biomethane (€32.37/GJ of biofuel; intensive 2-cut system) from a small on-farm facility ranks between that of sugarbeet (€29.62) and wheat grain ethanol (€34.31) produced in large industrial facilities. The feedstock costs for the above three biofuels represent 0.38, 0.57, and 0.54 of the total biofuel cost. The importance of feedstock cost on biofuel cost is further highlighted by the 0.43 increase in the cost of biomethane when grass silage is priced at the top quartile (€46/t or €232/t VS) compared to the bottom quartile purchase price.