878 resultados para Methicillin-resistant Staphylococcus aureus


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The recombinant production of a respiratory syncytial virus (RSV) candidate vaccine BBG2Na in baby hamster kidney cells (BHK-21 cells) was investigated. BBG2Na consists of a serum-albumin-binding region (BB) fused to a 101-amino-acid fragment of the RSV G-protein. Semliki Forest virus-based expression vectors encoding both intracellular and secreted forms of BBG2Na were constructed and found to be functional. Affinity recovery of BBG2Na employing human serum albumin columns was found to be inefficient due to the abundance of BSA in the applied samples. Instead, a strategy using a tailor-made affinity ligand based on a combinatorially engineered Staphylococcus aureus protein A domain, showing specific binding to the G-protein part of the product, was evaluated. In conclusion, a strategy for production and successful recovery of BBG2Na in mammalian cells was created, through the development of a product-specific affinity column.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe the isolation and structural characterization of a family of antimicrobial peptides related to kassinatuerin-2, from the skin secretion of the African hyperoliid frog, Kassina maculata. All four peptides, designated kassinatuerin-2Ma through Md, are C-terminally-amidated 20-mers with the consensus sequence – FX1GAIAAALPHVIX2AIKNAL – where X1 = L/F/V/I and X2 = S/N. All four peptides are encoded by precursors of 69 amino acids. Synthetic replicates of all kassinatuerin-2 related peptides displayed a potent inhibitory activity against Staphylococcus aureus with a minimal inhibitory concentration of 16 µM, at which concentration, however, they effected 18% haemolysis of horse erythrocytes after 2 h. Despite obvious membranolytic properties, all peptides were ineffective at inhibiting the growth of Escherichia coli at concentrations up to 200 µM and were relatively ineffective against Candida albicans (MIC 120 µM). The kassinatuerin-2 related peptides of K. maculata skin secretion thus possess a discrete antimicrobial and weak haemolytic activity in contrast to the prototype kassinatuerin-2 from the skin secretion of Kassina senegalensis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many neuropeptides are similar in size, amino acid composition and charge to antimicrobial peptides. This study aimed to determine whether the neuropeptides substance P (SP), neurokinin A (NKA), calcitonin gene-related peptide (CGRP), neuropeptide Y (NPY) and vasoactive intestinal polypeptide (VIP), displayed antimicrobial activity against Streptococcus mutans, Lactobacillus acidophilus, Enterococcus faecalis, Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans. SP, NPY, VIP and CGRP displayed variable degrees of antimicrobial activity against all the pathogens tested with the exception of S. aureus. These antimicrobial activities add a further dimension to the immunomodulatory roles for neuropeptides in the inflammatory and immune responses. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Amphibian skin secretions have proven to be rich sources of antimicrobial peptides that are proposed to be fundamental components of the innate immune system. As amphibian skin is a multi-functional organ playing, among other things, a crucial role in respiration, it has been deemed that a core biological role for such peptides is control of microbial flora on this surface. To date, however, antimicrobial efficacy has been universally determined by means of establishing minimum inhibitory concentrations (MICs) using planktonic organisms rather than those within a biofilm such as would occur on this exposed surface. Here we describe the identification and structural characterisation of a novel 19 amino acid residue antimicrobial peptide of the phylloseptin family, named PSN-1, from the skin secretion of the waxy monkey frog, Phyllomedusa sauvagei. PSN-1 displayed broad-spectrum activity against a range of planktonic organisms with a high potency (MIC 5 µM) against Staphylococcus aureus. In a specific bioassay with the same organism grown as a biofilm, the minimal biofilm eradication concentration (MBEC) was found to be of the same high potency (5 µM). The present data would suggest that evaluation of actions and potency of amphibian skin secretion antimicrobial peptides might best be achieved by evaluating MBEC rather than MIC using planktonic organisms and that data arising from such studies may have more biological relevance in reflecting the purpose for which they have evolved through natural selection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Amphibian skin secretions are rich sources of cationic amphipathic peptides which often possess potent and broad-spectrum antimicrobial activity. However, the venoms of other animals such as hymenopteran insects, also contain peptides with these characteristics and the literature is unclear as to their antimicrobial potential. Here we subjected the venom of the European hornet, Vespa crabro, to reverse phase HPLC fractionation followed by screening of aliquots of individual fractions in bacterial zonal inhibition assays. Two major peptides possessing activity in these assays were further purified by HPLC and subjected to MALDI-TOF MS analysis and MS/MS fragmentation using an ESI mass spectrometer. The peptides were identified as mastoparan C (LNLKALLAVAKKILamide) and crabrolin (FLPLILRKIVTALamide). Replicates of both peptides were synthesised by solid-phase methodology and mean inhibitory concentrations (MICs) established against Staphylococcus aureus and Escherichia coli. Mastoparan C was found to be a potent antimicrobial with MIC values of 2 µM and 4 µM against S. aureus and E. coli, respectively. Crabrolin was found to be less potent with MIC values of > 160 µM and 40 µM for S. aureus and E. coli. Hornet venom thus contains a potent antimicrobial peptide that has been unambiguously identified as mastoparan C, a peptide that is known to affect profound histamine release from mast cells and to generally activate membrane G protein-linked receptors. It is thus highly probable that its antimicrobial effects, like those previously documented, are a result of a generalized membrane interactive and disruptive function — perhaps reflective of the authentic role of amphibian skin antimicrobials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Skin secretions from Australian frogs of the genus Litoria have been extensively studied for many years and are known to contain a large array of antimicrobial peptides that often bear their specific names — caerins (L. caerulea), aureins (L. aurea), citropins (L. citropa) and maculatins (L. genimaculata) — and each group displays distinct primary structural attributes. During a systematic transcriptome cloning study using a cDNA library derived from skin secretion of L. aurea, a series of identical clones were identified that encoded a novel 25-mer antimicrobial peptide that displayed 92% structural identity with caerin 1.12 from L. caerulea, differing in amino acid sequence at only two positions — Arg for Gly at position 7 and Leu amide for Ser amide at the C-terminus. The novel peptide had conserved Pro residues at positions 15 and 19 that flank a flexible hinge region which previous studies have suggested are important for effective orientation of the two alpha-helices within the bacterial membrane resulting in lysis of cells. As the two substitutions in the novel peptide serve to increase both positive charge and hydrophobicity, we synthesised a replicate and determined its minimal inhibitory concentration (MIC) against Gram positive Staphylococcus aureus and Gram negative Escherichia coli. The MICs for these organisms were 3 µM and 4 µM, respectively, indicating a high potency and haemolysis was

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Protease inhibitors are found in many venoms and evidence suggests that they occur widely in amphibian skin secretions. Kunitz inhibitors have been found in the skin secretions of bombinid toads and ranid frogs, Kazal inhibitors in phyllomedusine frogs and Bowman–Birk inhibitors in ranid frogs. Selective protease inhibitors could have important applications as therapeutics in the treatment of diseases in which discrete proteases play an aetiologcal role. Here we have examined the skin secretion of the edible frog, Rana esculenta, for protease inhibitors using trypsin as a model. HPLC fractions of secretions were screened for inhibitory activity using a chromogenic substrate as reporter. Three major peptides were resolved with trypsin inhibitory activity in HPLC fractions — one was a Kunitz-type inhibitor, a second was a Bowman–Birk inhibitor but the third represented a novel class of trypsin inhibitor in European frog skin. Analysis of the peptide established the structure of a 17-mer with an N-terminal Ala (A) residue and a C-terminal Cys (C) residue with a single disulphide bridge between Cys 12 and 17. Peptide AC-17 resembled a typical “Rana box” antimicrobial peptide but while it was active against Escherichia coli (MIC 30 µM) it was devoid of activity against Staphylococcus aureus and of haemolytic activity. In contrast, the peptide was a potent inhibitor of trypsin with a Ki of 5.56 µM. AC-17 represents the prototype of a novel trypsin inhibitor from the skin secretion of a European ranid frog that may target a trypsin-like protease present on the surface of Gram-negative bacteria.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The antimicrobial peptides of amphibian skin secretions are proposed to aid survival in microbe-rich environments. While many amphibians inhabit such environments, other such as the Wuyi Mountain torrent frog, Amolops wuyiensis, live in pristine waters flowing from underground mountain springs. This species thus represents an interesting model in which to study antimicrobial peptides. “Shotgun” cloning of a skin-derived cDNA library from this species identified transcripts encoding a brevinin-1 and a ranatuerin-2. Peptides with coincident molecular masses to both predicted mature peptides were identified in HPLC fractions of skin secretion. Synthetic replicates of both peptides were generated by solid-phase peptide synthesis and tested for activity using Staphylococcus aureus, Escherichia coli and Candida albicans. The brevinin was found to be broad-spectrum and potent with minimum inhibitory concentrations (MICs) of 24 µM (Sa), 5 µM (Ec) and 20 µM (Ca). In contrast, the ranatuerin was less effective and of narrower spectrum with an MIC > 200 µM for Sa, 40 µM (Ec) and 120 µM (Ca). Thus this species of amphibian that lives in a pristine environment does indeed possess at least one potent and broad-spectrum antimicrobial peptide in its skin secretion arsenal. This phenomenon could be explained in several ways. Firstly, it may represent an ancestral peptide required when the stem species inhabited microbe-rich environments. However, there is mounting evidence for the second reason, that suggests the function of such peptides is not primarily in antimicrobial defence.