998 resultados para Habitat


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study provided a thorough test of the acoustic adaptation hypothesis using a within-species comparison of call structure involving a wide range of habitat types, an objective measure of habitat density and direct measures of habitat-related attenuation. The structure of the bower advertisement call of the satin bowerbird was measured in 16 populations from throughout the species' range and related to the habitat type and density at each site. Transmission of white noise, pure tones and different bowerbird dialects was measured in five of six habitat types inhabited by satin bowerbirds. Bowerbird advertisement call structure converged in similar habitats but diverged among different habitats; this pattern was apparent at both continent-wide and local geographical scales. Bowerbirds' call structures differed with changes in habitat density, consistent with the acoustic adaptation hypothesis. Lower frequencies and less frequency modulation were utilized in denser habitats such as rainforest and higher frequencies and more frequency modulation were used in the more open eucalypt-dominated habitats. The white noise and pure tone transmission measurements indicated that different habitats varied in their sound transmission properties in a manner consistent with the observed variation in satin bowerbird vocalizations. There was no effect of geographical proximity of recording locations, nor was there the predicted inverse relationship between frequency and body size. These findings indicate that the transmission qualities of different habitats have had a major influence on variation in vocal phenotypes in this species. In addition, previously published molecular data for this species suggest that there is no effect of genetic relatedness on call similarity among satin bowerbird populations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Australia more than 300 vertebrates, including 43 insectivorous bat species, depend on hollows in habitat trees for shelter, with many species using a network of multiple trees as roosts, We used roost-switching data on white-striped freetail bats (Tadarida australis; Microchiroptera: Molossidae) to construct a network representation of day roosts in suburban Brisbane, Australia. Bats were caught from a communal roost tree with a roosting group of several hundred individuals and released with transmitters. Each roost used by the bats represented a node in the network, and the movements of bats between roosts formed the links between nodes. Despite differences in gender and reproductive stages, the bats exhibited the same behavior throughout three radiotelemetry periods and over 500 bat days of radio tracking: each roosted in separate roosts, switched roosts very infrequently, and associated with other bats only at the communal roost This network resembled a scale-free network in which the distribution of the number of links from each roost followed a power law. Despite being spread over a large geographic area (> 200 km(2)), each roost was connected to others by less than three links. One roost (the hub or communal roost) defined the architecture of the network because it had the most links. That the network showed scale-free properties has profound implications for the management of the habitat trees of this roosting group. Scale-free networks provide high tolerance against stochastic events such as random roost removals but are susceptible to the selective removal of hub nodes. Network analysis is a useful tool for understanding the structural organization of habitat tree usage and allows the informed judgment of the relative importance of individual trees and hence the derivation of appropriate management decisions, Conservation planners and managers should emphasize the differential importance of habitat trees and think of them as being analogous to vital service centers in human societies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. Many species of delphinids co-occur in space and time. However, little is known of their ecological interactions and the underlying mechanisms that mediate their coexistence. 2. Snubfin Orcaella heinsohni, and Indo-Pacific humpback dolphins Sousa chinensis, live in sympatry throughout most of their range in Australian waters. I conducted boat-based surveys in Cleveland Bay, north-east Queensland, to collect data on the space and habitat use of both species. Using Geographic Information Systems, kernel methods and Euclidean distances I investigated interspecific differences in their space use patterns, behaviour and habitat preferences. 3. Core areas of use (50% kernel range) for both species were located close to river mouths and modified habitat such as dredged channels and breakwaters close to the Port of Townsville. Foraging and travelling activities were the dominant behavioural activities of snubfin and humpback dolphins within and outside their core areas. 4. Their representative ranges (95% kernel range) overlapped considerably, with shared areas showing strong concordance in the space use by both species. Nevertheless, snubfin dolphins preferred slightly shallower (1-2 m) waters than humpback dolphins (2-5 m). Additionally, shallow areas with seagrass ranked high in the habitat preferences of snubfin dolphins, whereas humpback dolphins favoured dredged channels. 5. Slight differences in habitat preferences appear to be one of the principal factors maintaining the coexistence of snubfin and humpback dolphins. I suggest diet partitioning and interspecific aggression as the major forces determining habitat selection in these sympatric species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many endangered species worldwide are found in remnant populations, often within fragmented landscapes. However, when possible, an understanding of the natural extent of population structure and dispersal behaviour of threatened species would assist in their conservation and management. The brush-tailed rock-wallaby (Petrogale penicillata), a once abundant and widespread rock-wallaby species across southeastern Australia, has become nearly extinct across much of the southern part of its range. However, the northern part of the species' range still sustains many small colonies closely distributed across suitable habitat, providing a rare opportunity to investigate the natural population dynamics of a listed threatened species. We used 12 microsatellite markers to investigate genetic diversity, population structure and gene flow among brush-tailed rock-wallaby colonies within and among two valley regions with continuous habitat in southeast Queensland. We documented high and signifcant levels of population genetic structure between rock-wallaby colonies embedded in continuous escarpment habitat and forest. We found a strong and significant pattern of isolation-by-distance among colonies indicating restricted gene flow over a small geographic scale (< 10 km) and conclude that gene flow is more likely limited by intrinsic factors rather than environmental factors. In addition, we provide evidence that genetic diversity was significantly lower in colonies located in a more isolated valley region compared to colonies located in a valley region surrounded by continuous habitat. These findings shed light on the processes that have resulted in the endangered status of rock-wallaby species in Australia and they have strong implications for the conservation and management of both the remaining 'connected' brush-tailed rock-wallaby colonies in the northern parts of the species' range and the remnant endangered populations in the south.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Utilisation by fish of different estuarine habitats is known to vary at many different temporal scales, however no study to date has examined how utilisation varies at all the relevant times scales simultaneously. Here, we compare the utilisation by fish of sandy, intertidal foreshore habitats in a subtropical estuary at four temporal scales: between major spawning periods (spring/ summer and winter), among months within spawning periods, between the full and new moon each month, and between night and day within those lunar phases. Comparisons of assemblage composition, abundance of individuals and of fish in seven different,ecological guilds' were used to identify the temporal scales at which fish varied their use of unvegetated sandy habitats in the lower Noosa Estuary, Queensland, Australia. Fish assemblages were sampled with a seine net at three different regions. The most numerically dominant species caught were southern herring (Herklotsichthys castelnaui: Clupeidae), sand whiting (Sillago ciliata: Sillaginidae), weeping toadfish (Torquigener pleurogramma: Tetraodomidae), and silver biddy (Gerres subfasciatus: Gerreidae). Considerable variation at a range of temporal scales from short term (day versus night) to longer term (spawning periods) was detected for all but one of the variables examined. The clearest patterns were observed for diurnal effects, where generally abundance was greater at night than during the day. There were also strong lunar effects, although there were no consistent patterns between full moon and new moon periods. Significant differences among months within spawning periods were more common than differences between the actual spawning periods. The results clearly indicate that utilisation of sandy, unvegetated estuarine habitats is very dynamic and highly variable in space and time. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Classical metapopulation theory assumes a static landscape. However, empirical evidence indicates many metapopulations are driven by habitat succession and disturbance. We develop a stochastic metapopulation model, incorporating habitat disturbance and recovery, coupled with patch colonization and extinction, to investigate the effect of habitat dynamics on persistence. We discover that habitat dynamics play a fundamental role in metapopulation dynamics. The mean number of suitable habitat patches is not adequate for characterizing the dynamics of the metapopulation. For a fixed mean number of suitable patches, we discover that the details of how disturbance affects patches and how patches recover influences metapopulation dynamics in a fundamental way. Moreover, metapopulation persistence is dependent not only oil the average lifetime of a patch, but also on the variance in patch lifetime and the synchrony in patch dynamics that results from disturbance. Finally, there is an interaction between the habitat and metapopulation dynamics, for instance declining metapopulations react differently to habitat dynamics than expanding metapopulations. We close, emphasizing the importance of using performance measures appropriate to stochastic systems when evaluating their behavior, such as the probability distribution of the state of the. metapopulation, conditional on it being extant (i.e., the quasistationary distribution).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A population of the grassland earless dragon (Tympanocryptis pinguicolla) on the Darling Downs, Queensland, Australia, had been considered extinct until its recent rediscovery. We determined factors affecting grassland earless dragon abundance and prey availability in 3 habitats. Mean dragon body condition and prey numbers were higher in sorghum than grasslands and grass verges. Poisson regression analyses indicated that the dragon numbers were 10 times higher in sorghum, and that this may result from differences in prey numbers as well as other habitat conditions. Tracking data indicated selection of open versus closed microhabitat. Sorghum planted in rows provided alternating open and closed microhabitats for optimal thermoregulation conditions. Grasslands and grass verges were more uniformly shaded. Of individuals we tracked in the sorghum stubble, 85.7% used litter as overnight refuges. Litter was abundant in sorghum and sparse in grass habitats. The practices of minimum tillage and resting stubble strips possibly mitigate agricultural impacts on dragons and provide continuous access to suitable habitat. Changes in agricultural practices that affect the habitat suitability will potentially have detrimental impacts on the population. Our data suggest that conservation efforts be focused on maintaining suitability of habitats in crop fields. We recommend monitoring dragon abundance at control and trial sites of any new agricultural practices; this will provide opportunity to modify or stop undesirable practices before adoption by farmers. Conservation agencies may use our data as a baseline for monitoring long-term viability of the population.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The loss and fragmentation of forest habitats by human land use are recognised as important factors influencing the decline of forest-dependent fauna. Mammal species that are dependent upon forest habitats are particularly sensitive to habitat loss and fragmentation because they have highly specific habitat requirements, and in many cases have limited ability to move through and utilise the land use matrix. We addressed this problem using a case study of the koala (Phascolarctos cinereus) surveyed in a fragmented rural-urban landscape in southeast Queensland, Australia. We applied a logistic modelling and hierarchical partitioning analysis to determine the importance of forest area and its configuration relative to site (local) and patch-level habitat variables. After taking into account spatial auto-correlation and the year of survey, we found koala occurrence increased with the area of all forest habitats, habitat patch size and the proportion of primary Eucalyptus tree species; and decreased with mean nearest neighbour distance between forest patches, the density of forest patches, and the density of sealed roads. The difference between the effect of habitat area and configuration was not as strong as theory predicts, with the configuration of remnant forest becoming increasingly important as the area of forest habitat declines. We conclude that the area of forest, its configuration across the landscape, as well as the land use matrix, are important determinants of koala occurrence, and that habitat configuration should not be overlooked in the conservation of forest-dependent mammals, such as the koala. We highlight the implications of these findings for koala conservation. (c) 2006 Elsevier Ltd. All rights reserved.