944 resultados para Gene mutations


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Cystic fibrosis (CF) is the most prevalent lethal autosomal recessive disease with a broad spectrum of phenotypes. Mutation of ΔF508 in the CFTR gene is the most important and lethal mutation in CF, which contains 70% of all predisposing mutations for CF worldwide. Objectives: Determining frequency of genotypes with ΔF508 mutation in CFTR gene, and evaluation of correlation between genotype and phenotype of Iranian patients with CF. Patients and Methods: Thirty six patients were included in this cross sectional study. ΔF508 mutations in both alleles of the CFTR gene were checked. Results: Among 36 pediatric patients, ΔF508 mutation was detected in 9 (25%) patients; 2 patients were heterozygous, and 7 patients homozygous for this mutation. From overall 72 tracked alleles, 11 (15.2%) were found to have ΔF508 mutations. Differences in prevalence of dyspnea and bronchiectasis were significant in homozygote group, compared with non-mutated group for ΔF508. Conclusions: It seems that more ΔF508 mutated alleles lead to more severe symptoms of CF.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: ABCA3 glycoprotein belongs to the ATP-binding cassette (ABC) superfamily of transporters, which utilize the energy derived from hydrolysis of ATP for the translocation of a wide variety of substrates across the plasma membrane. Mutations in the ABCA3 gene are knowingly causative for fatal surfactant deficiency, particularly respiratory distress syndrome (RDS) in term babies. Case Presentation: In this study, Sanger sequencing of the whole ABCA3 gene (NCBI NM_001089) was performed in a neonatal boy with severe RDS. A homozygous mutation has been identified in the patient. Parents were heterozygous for the same missense mutation GGA > AGA at position 202 in exon 6 of the ABCA3 gene (c.604G > A; p.G202R). Furthermore, 70 normal individuals have been analyzed for the mentioned change with negative results. Conclusions: Regarding Human Genome Mutation Database (HGMD) and other literature recherche, the detected change is a novel mutation and has not been reported before. Bioinformatics mutation predicting tools prefer it as pathogenic.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: Apert syndrome (AS) is a craniosynostosis condition caused by mutations in the Fibroblast Growth Factor Receptor 2 (FGFR2) gene. Clinical features include cutaneous and osseous symmetric syndactily in hands and feet, with variable presentations in bones, brain, skin and other internal organs. Methods: Members of two families with an index case of Apert Syndrome were assessed to describe relevant clinical features and molecular analysis (sequencing and amplification) of exons 8, 9 and 10 of FGFR2 gen. Results: Family 1 consists of the mother, the index case and half -brother who has a cleft lip and palate. In this family we found a single FGFR2 mutation, S252W, in the sequence of exon 8. Although mutations were not found in the study of the patient affected with cleft lip and palate, it is known that these diseases share signaling pathways, allowing suspected alterations in shared genes. In the patient of family 2, we found a sequence variant T78.501A located near the splicing site, which could interfere in this process, and consequently with the protein function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We take a functional genomics approach to congenital heart disease mechanism. We used DamID to establish a robust set of target genes for NKX2-5 wild type and disease associated NKX2-5 mutations to model loss-of-function in gene regulatory networks. NKX2-5 mutants, including those with a crippled homeodomain, bound hundreds of targets including NKX2-5 wild type targets and a unique set of "off-targets", and retained partial functionality. NKXΔHD, which lacks the homeodomain completely, could heterodimerize with NKX2-5 wild type and its cofactors, including E26 transformationspecific (ETS) family members, through a tyrosine-rich homophilic interaction domain (YRD). Off-targets of NKX2-5 mutants, but not those of an NKX2-5 YRD mutant, showed overrepresentation of ETS binding sites and were occupied by ETS proteins, as determined by DamID. Analysis of kernel transcription factor and ETS targets show that ETS proteins are highly embedded within the cardiac gene regulatory network. Our study reveals binding and activities of NKX2-5 mutations on WT target and off-targets, guided by interactions with their normal cardiac and general cofactors, and suggest a novel type of gainof- function in congenital heart disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The tissue kallikreins are serine proteases encoded by highly conserved multigene families. The rodent kallikrein (KLK) families are particularly large, consisting of 13 26 genes clustered in one chromosomal locus. It has been recently recognised that the human KLK gene family is of a similar size (15 genes) with the identification of another 12 related genes (KLK4-KLK15) within and adjacent to the original human KLK locus (KLK1-3) on chromosome 19q13.4. The structural organisation and size of these new genes is similar to that of other KLK genes except for additional exons encoding 5 or 3 untranslated regions. Moreover, many of these genes have multiple mRNA transcripts, a trait not observed with rodent genes. Unlike all other kallikreins, the KLK4-KLK15 encoded proteases are less related (25–44%) and do not contain a conventional kallikrein loop. Clusters of genes exhibit high prostatic (KLK2-4, KLK15) or pancreatic (KLK6-13) expression, suggesting evolutionary conservation of elements conferring tissue specificity. These genes are also expressed, to varying degrees, in a wider range of tissues suggesting a functional involvement of these newer human kallikrein proteases in a diverse range of physiological processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: The murine ghrelin gene (Ghrl), originally sequenced from stomach tissue, contains five exons and a single transcription start site in a short, 19 bp first exon (exon 0). We recently isolated several novel first exons of the human ghrelin gene and found evidence of a complex transcriptional repertoire. In this report, we examined the 5' exons of the murine ghrelin orthologue in a range of tissues using 5' RACE. -----FINDINGS: 5' RACE revealed two transcription start sites (TSSs) in exon 0 and four TSSs in intron 0, which correspond to 5' extensions of exon 1. Using quantitative, real-time RT-PCR (qRT-PCR), we demonstrated that extended exon 1 containing Ghrl transcripts are largely confined to the spleen, adrenal gland, stomach, and skin. -----CONCLUSION: We demonstrate that multiple transcription start sites are present in exon 0 and an extended exon 1 of the murine ghrelin gene, similar to the proximal first exon organisation of its human orthologue. The identification of several transcription start sites in intron 0 of mouse ghrelin (resulting in an extension of exon 1) raises the possibility that developmental-, cell- and tissue-specific Ghrl mRNA species are created by employing alternative promoters and further studies of the murine ghrelin gene are warranted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction During development and regeneration, odontogenesis and osteogenesis are initiated by a cascade of signals driven by several master regulatory genes. Methods In this study, we investigated the differential expression of 84 stem cell–related genes in dental pulp cells (DPCs) and periodontal ligament cells (PDLCs) undergoing odontogenic/osteogenic differentiation. Results Our results showed that, although there was considerable overlap, certain genes had more differential expression in PDLCs than in DPCs. CCND2, DLL1, and MME were the major upregulated genes in both PDLCs and DPCs, whereas KRT15 was the only gene significantly downregulated in PDLCs and DPCs in both odontogenic and osteogenic differentiation. Interestingly, a large number of regulatory genes in odontogenic and osteogenic differentiation interact or crosstalk via Notch, Wnt, transforming growth factor β (TGF-β)/bone morphogenic protein (BMP), and cadherin signaling pathways, such as the regulation of APC, DLL1, CCND2, BMP2, and CDH1. Using a rat dental pulp and periodontal defect model, the expression and distribution of both BMP2 and CDH1 have been verified for their spatial localization in dental pulp and periodontal tissue regeneration. Conclusions This study has generated an overview of stem cell–related gene expression in DPCs and PDLCs during odontogenic/osteogenic differentiation and revealed that these genes may interact through the Notch, Wnt, TGF-β/BMP, and cadherin signalling pathways to play a crucial role in determining the fate of dental derived cell and dental tissue regeneration. These findings provided a new insight into the molecular mechanisms of the dental tissue mineralization and regeneration

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Extended spectrum β-lactamases or ESBLs, which are derived from non-ESBL precursors by point mutation of β-lactamase genes (bla), are spreading rapidly all over the world and have caused considerable problems in the treatment of infections caused by bacteria which harbour them. The mechanism of this resistance is not fully understood and a better understanding of these mechanisms might significantly impact on choosing proper diagnostic and treatment strategies. Previous work on SHV β-lactamase gene, blaSHV, has shown that only Klebsiella pneumoniae strains which contain plasmid-borne blaSHV are able to mutate to phenotypically ESBL-positive strains and there was also evidence of an increase in blaSHV copy number. Therefore, it was hypothesised that although specific point mutation is essential for acquisition of ESBL activity, it is not yet enough, and blaSHV copy number amplification is also essential for an ESBL-positive phenotype, with homologous recombination being the likely mechanism of blaSHV copy number expansion. In this study, we investigated the mutation rate of non-ESBL expressing K. pneumoniae isolates to an ESBL-positive status by using the MSS-maximum likelihood method. Our data showed that blaSHV mutation rate of a non-ESBL expressing isolate is lower than the mutation rate of the other single base changes on the chromosome, even with a plasmid-borne blaSHV gene. On the other hand, mutation rate from a low MIC ESBL-positive (≤ 8 µg/mL for cefotaxime) to high MIC ESBL-positive (≥16 µg/mL for cefotaxime) is very high. This is because only gene copy number increase is needed which is probably mediated by homologous recombination that typically takes place at a much higher frequencies than point mutations. Using a subinhibitory concentration of novobiocin, as a homologous recombination inhibitor, revealed that this is the case.