902 resultados para vólvulo intestinal


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lactobacillus rhamnosus GG is a probiotic bacterium that is known worldwide. Since its discovery in 1985, the health effects and biology of this health-promoting strain have been researched at an increasing rate. However, knowledge of the molecular biology responsible for these health effects is limited, even though research in this area has continued to grow since the publication of the whole genome sequence of L. rhamnosus GG in 2009. In this thesis, the molecular biology of L. rhamnosus GG was explored by mapping the changes in protein levels in response to diverse stress factors and environmental conditions. The proteomics data were supplemented with transcriptome level mapping of gene expression. The harsh conditions of the gastro-intestinal tract, which involve acidic conditions and detergent-like bile acids, are a notable challenge to the survival of probiotic bacteria. To simulate these conditions, L. rhamnosus GG was exposed to a sudden bile stress, and several stress response mechanisms were revealed, among others various changes in the cell envelope properties. L. rhamnosus GG also responded in various ways to mild acid stress, which probiotic bacteria may face in dairy fermentations and product formulations. The acid stress response of L. rhamnosus GG included changes in central metabolism and specific responses related to the control of intracellular pH. Altogether, L. rhamnosus GG was shown to possess a large repertoire of mechanisms for responding to stress conditions, which is a beneficial character of a probiotic organism. Adaptation to different growth conditions was studied by comparing the proteome level responses of L. rhamnosus GG to divergent growth media and to different phases of growth. Comparing different growth phases revealed that the metabolism of L. rhamnosus GG is modified markedly during shift from the exponential to the stationary phase of growth. These changes were seen both at proteome and transcriptome levels and in various different cellular functions. When the growth of L. rhamnosus GG in a rich laboratory medium and in an industrial whey-based medium was compared, various differences in metabolism and in factors affecting the cell surface properties could be seen. These results led us to recommend that the industrial-type media should be used in laboratory studies of L. rhamnosus GG and other probiotic bacteria to achieve a similar physiological state for the bacteria as that found in industrial products, which would thus yield more relevant information about the bacteria. In addition, an interesting phenomenon of protein phosphorylation was observed in L. rhamnosus GG. Phosphorylation of several proteins of L. rhamnosus GG was detected, and there were hints that the degree of phosphorylation may be dependent on the growth pH.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Salmonella enterica is an important enteric pathogen and its various serovars are involved in causing both systemic and intestinal diseases in humans and domestic animals. The emergence of multidrug-resistant strains of Salmonella leading to increased morbidity and mortality has further complicated its management. Live attenuated vaccines have been proven superior over killed or subunit vaccines due to their ability to induce protective immunity. Of the various strategies used for the generation of live attenuated vaccine strains, focus has gradually shifted towards manipulation of virulence regulator genes. Hfq is a RNA chaperon which mediates the binding of small RNAs to the mRNA and assists in post-transcriptional gene regulation in bacteria. In this study, we evaluated the efficacy of the Salmonella Typhimurium Dhfq strain as a candidate for live oral vaccine in murine model of typhoid fever. Salmonella hfq deletion mutant is highly attenuated in cell culture and animal model implying a significant role of Hfq in bacterial virulence. Oral immunization with the Salmonella hfq deletion mutant efficiently protects mice against subsequent oral challenge with virulent strain of Salmonella Typhimurium. Moreover, protection was induced upon both multiple as well as single dose of immunizations. The vaccine strain appears to be safe for use in pregnant mice and the protection is mediated by the increase in the number of CD4(+) T lymphocytes upon vaccination. The levels of serum IgG and secretory-IgA in intestinal washes specific to lipopolysaccharide and outer membrane protein were significantly increased upon vaccination. Furthermore, hfq deletion mutant showed enhanced antigen presentation by dendritic cells compared to the wild type strain. Taken together, the studies in murine immunization model suggest that the Salmonella hfq deletion mutant can be a novel live oral vaccine candidate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aim of the study: The medicinal plants are integral source of easily available remedy used in rural healthcare system. This study was conducted among three major ethnic groups namely the Nocte, the Nyishi and the Adi in the Eastern Himalayan region of Arunachal Pradesh to evaluate their comparative knowledge on medicinal plants. Materials and methods: The three remote districts of Arunachal Pradesh namely the Tirap, the Dibang Valley and the Papum Pare were surveyed through interviewing of randomly selected 237 participants using semi-structured questionnaire and regular field visits to selected districts. Results: We recorded the traditional use of 74 medicinal plants species belonging to 41 taxonomic plant families used for treating a total of 25 different diseases/ailments. The informant consensus factor (ICF) values demonstrated that local people tend to agree more with each other in terms of the plants used to treat malaria (0.71), jaundice (0.62), urological problems (0.56), dermatological disorders (0.45), pain (0.30), and respiratory disorder (0.33), and while the general health (0.15) and gastro-intestinal disorders category (0.28) were found low ICF values. Conclusion: Of the total 74 species recorded, the highest number of medicinal plants (36 species) was reported from the Adi of Lower Dibang Valley followed by the Nocte of the Tirap (25 species) and the Nyishi ethnic groups of Papum Pare districts (13 species). In the present study, we found that the men, elder people and illiterate ones had better knowledge on medicinal plants as compared to women, younger and literate people. Findings of this documentation study can be used as an ethnopharmacological basis for selecting plants for future phytochemical and pharmaceutical studies. (C) 2010 Elsevier Ireland Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Uroguanylin, guanylin, and lymphoguanylin are small peptides that activate renal and intestinal receptor guanylate cyclases (GC). They are structurally similar to bacterial heat-stable enterotoxins (ST) that cause secretory diarrhea. Uroguanylin, guanylin, and ST elicit natriuresis, kaliuresis, and diuresis by direct actions on kidney GC receptors. A 3,762-bp cDNA characterizing a uroguanylin/guanylin/ST receptor was isolated from opossum kidney (OK) cell RNA/cDNA. This kidney cDNA (OK-GC) encodes a mature protein containing 1,049 residues sharing 72.4�75.8% identity with rat, human, and porcine forms of intestinal GC-C receptors. COS or HEK-293 cells expressing OK-GC receptor protein were activated by uroguanylin, guanylin, or ST13 peptides. The 3.8-kb OK-GC mRNA transcript is most abundant in the kidney cortex and intestinal mucosa, with lower mRNA levels observed in urinary bladder, adrenal gland, and myocardium and with no detectable transcripts in skin or stomach mucosa. We propose that OK-GC receptor GC participates in a renal mechanism of action for uroguanylin and/or guanylin in the physiological regulation of urinary sodium, potassium, and water excretion. This renal tubular receptor GC may be a target for circulating uroguanylin in an endocrine link between the intestine and kidney and/or participate in an intrarenal paracrine mechanism for regulation of kidney function via the intracellular second messenger, cGMP.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Uroguanylin, guanylin, and lymphoguanylin are small peptides that activate renal and intestinal receptor guanylate cyclases (GC). They are structurally similar to bacterial heat-stable enterotoxins (ST) that cause secretory diarrhea. Uroguanylin, guanylin, and ST elicit natriuresis, kaliuresis, and diuresis by direct actions on kidney GC receptors. A 3,762-bp cDNA characterizing a uroguanylin/guanylin/ST receptor was isolated from opossum kidney (OK) cell RNA/cDNA. This kidney cDNA (OK-GC) encodes a mature protein containing 1,049 residues sharing 72.4-75.8% identity with rat, human, and porcine forms of intestinal GC-C receptors. COS or HEK-293 cells expressing OK-GC receptor protein were activated by uroguanylin, guanylin, or ST13 peptides. The 3.8-kb OK-GC mRNA transcript is most abundant in the kidney cortex and intestinal mucosa, with lower mRNA levels observed in urinary bladder, adrenal gland, and myocardium and with no detectable transcripts in skin or stomach mucosa. We propose that OK-GC receptor GC participates in a renal mechanism of action for uroguanylin and/or guanylin in the physiological regulation of urinary sodium, potassium, and water excretion. This renal tubular receptor GC may be a target for circulating uroguanylin in an endocrine link between the intestine and kidney and/or participate in an intrarenal paracrine mechanism for regulation of kidney function via the intracellular second messenger, cGMP.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Guanylyl cyclase C (GC-C) is a membrane-associated form of guanylyl cyclase and serves as the receptor for the heat-stable enterotoxin (ST) peptide and endogenous ligands guanylin, uroguanylin, and lymphoguanylin. The major site of expression of GC-C is the intestinal epithelial cell, although GC-C is also expressed in extraintestinal tissue such as the kidney, airway epithelium, perinatal liver, stomach, brain, and adrenal glands. Binding of ligands to GC-C leads to accumulation of intracellular cGMP, the activation of protein kinases G and A, and phosphorylation of the cystic fibrosis transmembrane conductance regulator (CFTR), a chloride channel that regulates salt and water secretion. We examined the expression of GC-C and its ligands in various tissues of the reproductive tract of the rat. Using reverse transcriptase and the polymerase chain reaction, we demonstrated the presence of GC-C, uroguanylin, and guanylin mRNA in both male and female reproductive organs. Western blot analysis using a monoclonal antibody to GC-C revealed the presence of differentially glycosylated forms of GC-C in the caput and cauda epididymis. Exogenous addition of uroguanylin to minced epididymal tissue resulted in cGMP accumulation, suggesting an autocrine or endocrine activation of GC-C in this tissue. Immunohistochemical analyses demonstrated expression of GC-C in the tubular epithelial cells of both the caput epididymis and cauda epididymis. Our results suggest that the GC-C signaling pathway could converge on CFTR in the epididymis and perhaps control fluid and ion balance for optimal sperm maturation and storage in this tissue.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Autosomal recessive primary microcephaly (MCPH) is a genetic disorder that causes a reduction of cortical outgrowth without severe interference with cortical patterning. It is associated with mutations in a number of genes encoding protein involved in mitotic spindle formation and centrosomal activities or cell cycle control. We have shown previously that blocking vasoactive intestinal peptide (VIP) during gestation in mice by using a VIP antagonist (VA) results in microcephaly. Here, we have shown that the cortical abnormalities caused by prenatal VA administration mimic the phenotype described in MCPH patients and that VIP blockade during neurogenesis specifically disrupts Mcph1 signaling. VA administration reduced neuroepithelial progenitor proliferation by increasing cell cycle length and promoting cell cycle exit and premature neuronal differentiation. Quantitative RT-PCR and Western blot showed that VA downregulated Mcph1. Inhibition of Mcph1 expression led to downregulation of Chk1 and reduction of Chk1 kinase activity. The inhibition of Mcph1 and Chk1 affected the expression of a specific subset of cell cycle-controlling genes and turned off neural stem cell proliferation in neurospheres. Furthermore, in vitro silencing of either Mcph1 or Chk1 in neurospheres mimicked VA-induced inhibition of cell proliferation. These results demonstrate that VIP blockade induces microcephaly through Mcph1 signaling and suggest that VIP/Mcph1/Chk1 signaling is key for normal cortical development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: The present paper documents the uses of plants in traditional herbal medicine for human and veterinary ailments, and those used for dietary supplements, religious purpose, local beverage, and plants used to poison fish and wild animals. Traditional botanical medicine is the primary mode of healthcare for most of the rural population in Arunachal Pradesh. Materials and methods: Field research was conducted between April 2006 and March 2009 with randomly selected 124 key informants using semi-structured questionnaire. The data obtained was analyzed through informant consensus factor (F(IC)) to determine the homogeneity of informant's knowledge on medicinal plants. Results: We documented 50 plants species belonging to 29 families used for treating 22 human and 4 veterinary ailments. Of the medicinal plants reported, the most common growth form was herbs (40%) followed by shrubs, trees, and climbers. Leaves were most frequently used plant parts. The consensus analysis revealed that the dermatological ailments have the highest F(IC) (0.56) and the gastro-intestinal diseases have F(IC) (0.43). F(IC) values indicated that there was high agreement in the use of plants in dermatological and gastro-intestinal ailments category among the users. Gymnocladus assamicus is a critically rare and endangered species used as disinfectant for cleaning wounds and parasites like leeches and lice on livestocks. Two plant species (Illicium griffithii and Rubia cordifolia) are commonly used for traditional dyeing of clothes and food items. Some of the edible plants recorded in this study were known for their treatment against high blood pressure (Clerodendron colebrookianum), diabetes mellitus (Momordica charantia), and intestinal parasitic worms like round and tape worms (Lindera neesiana, Solanum etiopicum, and Solanum indicum). The Monpas of Arunachal Pradesh have traditionally been using Daphne papyracea for preparing hand-made paper for painting and writing religious scripts in Buddhist monasteries. Three plant species (Derris scandens, Aesculus assamica, and Polygonum hydropiper) were frequently used to poison fish during the month of June-July every year and the underground tuber of Aconitum ferrox is widely used in arrow poisoning to kill ferocious animals like bear, wild pigs, gaur and deer. The most frequently cited plant species; Buddleja asiatica and Hedyotis scandens were used as common growth supplements during the preparation of fermentation starter cultures. Conclusion: The traditional pharmacopoeia of the Monpa ethnic group incorporates a myriad of diverse botanical flora. Traditional knowledge of the remedies is passed down through oral traditions without any written document. This traditional knowledge is however, currently threatened mainly due to acculturation and deforestation due to continuing traditional shifting cultivation. This study reveals that the rural populations in Arunachal Pradesh have a rich knowledge of forest-based natural resources and consumption of wild edible plants is still an integral part of their socio-cultural life. Findings of this documentation study can be used as an ethnopharmacological basis for selecting plants for future phytochemical and pharmaceutical studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The encapsulation of probiotic Lactobacillus acidophilus through layer-by-layer self-assembly of polyelectrolytes (PE) chitosan (CHI) and carboxymethyl cellulose (CMC) has been investigated,to enhance its survival m adverse conditions encountered in the GI tract The survival of encapsulated cells in simulated gastric (SGF) and intestinal fluids (SIF) is significant when compared to nonencapsulated cells On sequential exposure to SGF and SIF fox 120 nun, almost complete death of free cells is observed However, for cells coated with three nanolayers of PEs (CHI/CMC/CHI) about 33 log % of the cells (6 log cfu/500 mg) survived under the same conditions The enhanced survival rate of encapsulated L acidophilus can be attributed to the impermeability of polyelectrolyte nanolayers to large enzyme molecules like pepsin, and pancreatin that cause proteolysis and to the stability of the polyelectrolyte nanolayers in gastric and intestinal pH The PE coating also serves to reduce viability losses during freezing and freeze- drying About 73 and 92 log % of uncoated and coated cells survived after freeze:drying, and the losses occurring between freezing and freeze-drying were found to be lower for coated cells

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND Familial diarrhea disorders are, in most cases, severe and caused by recessive mutations. We describe the cause of a novel dominant disease in 32 members of a Norwegian family. The affected members have chronic diarrhea that is of early onset, is relatively mild, and is associated with increased susceptibility to inflammatory bowel disease, small-bowel obstruction, and esophagitis. METHODS We used linkage analysis, based on arrays with single-nucleotide polymorphisms, to identify a candidate region on chromosome 12 and then sequenced GUCY2C, encoding guanylate cyclase C (GC-C), an intestinal receptor for bacterial heat-stable enterotoxins. We performed exome sequencing of the entire candidate region from three affected family members, to exclude the possibility that mutations in genes other than GUCY2C could cause or contribute to susceptibility to the disease. We carried out functional studies of mutant GC-C using HEK293T cells. RESULTS We identified a heterozygous missense mutation (c.2519G -> T) in GUCY2C in all affected family members and observed no other rare variants in the exons of genes in the candidate region. Exposure of the mutant receptor to its ligands resulted in markedly increased production of cyclic guanosine monophosphate (cGMP). This may cause hyperactivation of the cystic fibrosis transmembrane regulator (CFTR), leading to increased chloride and water secretion from the enterocytes, and may thus explain the chronic diarrhea in the affected family members. CONCLUSIONS Increased GC-C signaling disturbs normal bowel function and appears to have a proinflammatory effect, either through increased chloride secretion or additional effects of elevated cellular cGMP. Further investigation of the relevance of genetic variants affecting the GC-C-CFTR pathway to conditions such as Crohn's disease is warranted. (Funded by Helse Vest Western Norway Regional Health Authority] and the Department of Science and Technology, Government of India.)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The protozoan parasite Entamoeba histolytica can invade both intestinal and extra intestinal tissues resulting in amoebiasis. During the process of invasion E. histolytica ingests red blood and host cells using phagocytic processes. Though phagocytosis is considered to be a key virulence determinant, the mechanism is not very well understood in E. histolytica. We have recently demonstrated that a novel C2 domain-containing protein kinase, EhC2PK is involved in the initiation of erythrophagocytosis. Because cells overexpressing the kinase-dead mutant of EhC2PK displayed a reduction in erythrophagocytosis, it appears that kinase activity is necessary for initiation. Biochemical analysis showed that EhC2PK is an unusual Mn2+-dependent serine kinase. It has a trans-autophosphorylated site at Ser(428) as revealed by mass spectrometric and biochemical analysis. The autophosphorylation defective mutants (S428A, KD Delta C) showed a reduction in auto and substrate phosphorylation. Time kinetics of in vitro kinase activity suggested two phases, an initial short slow phase followed by a rapid phase for wild type protein, whereas mutations in the autophosphorylation sites that cause defect (S428A) or conferred phosphomimetic property (S428E) displayed no distinct phases, suggesting that autophosphorylation may be controlling kinase activity through an autocatalytic mechanism. A reduction and delay in erythrophagocytosis was observed in E. histolytica cells overexpressing S428A and KD Delta C proteins. These results indicate that enrichment of EhC2PK at the site of phagocytosis enhances the rate of trans-autophosphorylation, thereby increasing kinase activity and regulating the initiation of erythrophagocytosis in E. histolytica.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Typhoid fever is a systemic disease caused by the human specific Gram-negative pathogen Salmonella enterica serovar Typhi (S Typhi). The extra-intestinal infections caused by Salmonella are very fatal. The incidence of typhoid fever remains very high in impoverished areas and the emergence of multidrug resistance has made the situation worse. To combat and to reduce the morbidity and mortality caused by typhoid fever, many preventive measures and strategies have been employed, the most important being vaccination. In recent years, many Salmonella vaccines have been developed including live attenuated as well as DNA vaccines and their clinical trials have shown encouraging results. But with the increasing antibiotic resistance, the development of potent vaccine candidate for typhoid fever is a need of the hour. This review discusses the latest trends in the typhoid vaccine development and the clinical trials which are underway.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Guanylyl cyclase C (GC-C) is a multidomain, membrane-associated receptor guanylyl cyclase. GC-C is primarily expressed in the gastrointestinal tract, where it mediates fluid-ion homeostasis, intestinal inflammation, and cell proliferation in a cGMP-dependent manner, following activation by its ligands guanylin, uroguanylin, or the heat-stable enterotoxin peptide (ST). GC-C is also expressed in neurons, where it plays a role in satiation and attention deficiency/hyperactive behavior. GC-C is glycosylated in the extracellular domain, and differentially glycosylated forms that are resident in the endoplasmic reticulum (130 kDa) and the plasma membrane (145 kDa) bind the ST peptide with equal affinity. When glycosylation of human GC-C was prevented, either by pharmacological intervention or by mutation of all of the 10 predicted glycosylation sites, ST binding and surface localization was abolished. Systematic mutagenesis of each of the 10 sites of glycosylation in GC-C, either singly or in combination, identified two sites that were critical for ligand binding and two that regulated ST-mediated activation. We also show that GC-C is the first identified receptor client of the lectin chaperone vesicular integral membrane protein, VIP36. Interaction with VIP36 is dependent on glycosylation at the same sites that allow GC-C to fold and bind ligand. Because glycosylation of proteins is altered in many diseases and in a tissue-dependent manner, the activity and/or glycan-mediated interactions of GC-C may have a crucial role to play in its functions in different cell types.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A causative agent in approximately 40% of diarrhea] cases. still remains unidentified. Though many enteroviruses (EVs) are transmitted through fecal-oral route and replicate in the intestinal cells, their association with acute diarrhea has not so far been recognized due to lack of detailed epidemiological investigations. This long-term, detailed molecular epidemiological study aims to conclusively determine the association of non-polio enteroviruses (NPEVs) with acute diarrhea in comaparison with rotavirus (RV) in children. Diarrheal stool specimens from 2161 children aged 0-2 years and 169 children between 2 and 9 years, and 1800 normal stool samples from age-matched healthy children between 0 and 9 years were examined during 2008-2012 for enterovirus (oral polio vaccine strains (OPVs) and NPEVs). Enterovirus serotypes were identified by complete VP1 gene sequence analysis. Enterovirus and rotavirus were detected in 19.01% (380/2330) and 13.82% (322/2330) diarrheal stools. During the study period, annual prevalence of EV- and RV-associated diarrhea ranged between 8% and 22%, but with contrasting seasonal prevalence with RV predominating during winter months and NPEV prevailing in other seasons. NPEVs are associated with epidemics-like outbreaks during which they are detected in up to 50% of diarrheic children, and in non-epidemic seasons in 0-10% of the patients. After subtraction of OPV-positive diarrheal cases (1.81%), while NPEVs are associated with about 17% of acute diarrhea, about 6% of healthy children showed asymptomatic NPEV excretion. Of 37 NPEV serotypes detected in diarrheal children, seven echovirus types 1, 7, 11, 13, 14, 30 and 33 are frequently observed, with Ell being more prevalent followed by E30. In conclusion, NPEVs are significantly associated with acute diarrhea, and NPEVs and rotavirus exhibit contrasting seasonal predominance. This study signifies the need for a new direction of research on enteroviruses involving systematic analysis of their contribution to diarrheal burden. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

While phosphotyrosine modification is an established regulatory mechanism in eukaryotes, it is less well characterized in bacteria due to low prevalence. To gain insight into the extent and biological importance of tyrosine phosphorylation in Escherichia coli, we used immunoaffinity-based phosphotyrosine peptide enrichment combined with high resolution mass spectrometry analysis to comprehensively identify tyrosine phosphorylated proteins and accurately map phosphotyrosine sites. We identified a total of 512 unique phosphotyrosine sites on 342 proteins in E. coli K12 and the human pathogen enterohemorrhagic E. coli (EHEC) O157:H7, representing the largest phosphotyrosine proteome reported to date in bacteria. This large number of tyrosine phosphorylation sites allowed us to define five phosphotyrosine site motifs. Tyrosine phosphorylated proteins belong to various functional classes such as metabolism, gene expression and virulence. We demonstrate for the first time that proteins of a type III secretion system (T3SS), required for the attaching and effacing (A/E) lesion phenotype characteristic for intestinal colonization by certain EHEC strains, are tyrosine phosphorylated by bacterial kinases. Yet, A/E lesion and metabolic phenotypes were unaffected by the mutation of the two currently known tyrosine kinases, Etk and Wzc. Substantial residual tyrosine phosphorylation present in an etk wzc double mutant strongly indicated the presence of hitherto unknown tyrosine kinases in E. coli. We assess the functional importance of tyrosine phosphorylation and demonstrate that the phosphorylated tyrosine residue of the regulator SspA positively affects expression and secretion of T3SS proteins and formation of A/E lesions. Altogether, our study reveals that tyrosine phosphorylation in bacteria is more prevalent than previously recognized, and suggests the involvement of phosphotyrosine-mediated signaling in a broad range of cellular functions and virulence.