989 resultados para genetic counseling


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Little is known about the ocean distributions of wild juvenile coho salmon off the Oregon-Washington coast. In this study we report tag recoveries and genetic mixed-stock estimates of juvenile fish caught in coastal waters near the Columbia River plume. To support the genetic estimates, we report an allozyme-frequency baseline for 89 wild and hatchery-reared coho salmon spawning populations, extending from northern California to southern British Columbia. The products of 59 allozyme-encoding loci were examined with starch-gel electrophoresis. Of these, 56 loci were polymorphic, and 29 loci had P0.95 levels of polymorphism. Average heterozygosities within populations ranged from 0.021 to 0.046 and averaged 0.033. Multidimensional scaling of chord genetic distances between samples resolved nine regional groups that were sufficiently distinct for genetic mixed-stock analysis. About 2.9% of the total gene diversity was due to differences among populations within these regions, and 2.6% was due to differences among the nine regions. This allele-frequency data base was used to estimate the stock proportions of 730 juvenile coho salmon in offshore samples collected from central Oregon to northern Washington in June and September-October 1998−2000. Genetic mixed-stock analysis, together with recoveries of tagged or fin-clipped fish, indicates that about one half of the juveniles came from Columbia River hatcheries. Only 22% of the ocean-caught juveniles were wild fish, originating largely from coastal Oregon and Washington rivers (about 20%). Unlike previous studies of tagged juveniles, both tag recoveries and genetic estimates indicate the presence of fish from British Columbia and Puget Sound in southern waters. The most salient feature of genetic mixed stock estimates was the paucity of wild juveniles from natural populations in the Columbia River Basin. This result reflects the large decrease in the abundances of these populations in the last few decades.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We used allozyme, microsatellite, and mitochondrial DNA (mtDNA) data to test for spatial and interannual genetic diversity in wall-eye pollock (Theragra chalcogramma) from six spawning aggregations representing three geographic regions: Gulf of Alaska, eastern Bering Sea, and eastern Kamchatka. Interpopulation genetic diversity was evident primarily from the mtDNA and two allozyme loci (SOD-2*, MPI*). Permutation tests ˆindicated that FST values for most allozyme and microsatellite loci were not significantly greater than zero. The microsatellite results suggested that high locus polymorphism may not be a reliable indicator of power for detecting population differentiation in walleye pollock. The fact that mtDNA revealed population structure and most nuclear loci did not suggests that the effective size of most walleye pollock populations is large (genetic drift is weak) and migration is a relatively strong homogenizing force. The allozymes and mtDNA provided mostly concordant estimates of patterns of spatial genetic variation. These data showed significant genetic variation between North American and Asian populations. In addition, two spawning aggregations in the Gulf of Alaska, in Prince William Sound, and off Middleton Island, appeared genetically distinct from walleye pollock spawning in the Shelikof Strait and may merit management as a distinct stock. Finally, we found evidence of interannual genetic variation in two of three North American spawning aggregations, similar in magnitude to the spatial variation among North American walleye pol-lock. We suggest that interannual genetic variation in walleye pollock may be indicative of one or more of the following factors: highly variable reproductive success, adult philopatry, source-sink metapopulation structure, and intraannual variation (days) in spawning timing among genetically distinct but spatially identical spawning aggregates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Studies on genetic improvement of penaeid prawns for the character higher tail weight using methods of selective breeding were undertaken. Prior to the actual breeding experiments it was necessary to find out the quantum of available variability in the character tail weight amongst the natural populations of Penaeus merguiensis from the Indian waters. Thirteen morphometric variables were measured and various statistical analyses were carried out. The tail weight showed almost double values of coefficient of variation in the females than the males (C.V. 20.37 and 11.08 respectively). The combination of the characters viz. sixth segment length (SSL), sixth segment depth (SSD) and posterior abdominal circumference (PAC) gave the highest R super(2) values. These variables were easy to measure and gave maximum variation in the character tail weight without sacrificing the breeders in the brood stock. The quantitative character tail weight was influenced by both genetic and environmental factors was statistically ascertained by applying 2-Factor analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Studies were undertaken to produce genetic clones derived from all homozygous mitotic gynogenetic individuals in rohu, Labeo rohita Ham. ln view of this, attempts were made to interfere with the normal functioning of the spindle apparatus during the first mitotic cell division of developing eggs using heat shocks, there by leading to the induction of mitotic gynogenetic diploids in the F1 generation. Afterwards, viable mitotic gynogenetic alevins were reared and a selected mature female fish was used to obtain ovulated eggs which were fertilized later with UV-irradiated milt. Milt was diluted with Cortland’s solution and the sperm concentration was maintained at 10⁸/ml. The UV-irradiation was carried out for 2 minutes at the intensity of 200 to 250 µW/cm² at 28± 1°C. The optimal heat shock of 40°C for 2 minutes applied at 25 to 30 minutes a.f. was used to induce mitotic gynogenesis in first (F1) generation and at 3 to 5 minutes a.f. to induce meiotic gynogenesis in the second (F2) generation. The results obtained are presented and the light they shed on the timing of the mitotic and meiotic cell division in this species is discussed.