987 resultados para compatibility


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A measurement of the single-top-quark t-channel production cross section in pp collisions at √s=7 TeV with the CMS detector at the LHC is presented. Two different and complementary approaches have been followed. The first approach exploits the distributions of the pseudorapidity of the recoil jet and reconstructed top-quark mass using background estimates determined from control samples in data. The second approach is based on multivariate analysis techniques that probe the compatibility of the candidate events with the signal. Data have been collected for the muon and electron final states, corresponding to integrated luminosities of 1.17 and 1.56 fb-1, respectively. The single-top-quark production cross section in the t-channel is measured to be 67.2±6.1 pb, in agreement with the approximate next-to-next-to-leading- order standard model prediction. Using the standard model electroweak couplings, the CKM matrix element |V tb| is measured to be 1.020 ± 0.046 (meas.) ± 0.017 (theor.). © 2012 CERN for the benefit of the CMS collaboration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents results from stress cracking (SC) tests performed in both fresh and exposed high density polyethylene (HDPE) geomembranes (GM). The HDPE GMs were exposed to ultraviolet radiation, thermal aging (air oven) and tested for chemical compatibility with sodium hydroxide. Stress cracking tests in both fresh and degraded samples were performed in accordance to ASTM D5397: Notched Constant Tensile Load Test (NCTL) and Single Point-Notched Constant Tensile Load Test (SP-NCTL). The results of the NCTL showed that the geomembrane degradation process can be considered to be a catalyst for the phenomenon of SC because it caused a 50% to 60% reduction in stress crack resistance. The most resistance reduction was observed for the sample under chemical compatibility with sodium hydroxide. For the SP-NCTL, the results showed that the samples maintain the same trend verified in the NCTL. The largest resistance reduction was evidenced in samples undergoing ultraviolet degradation. © 2012 ejge.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objectives: The clinical translation of stem cell-based Regenerative Endodontics demands further development of suitable injectable scaffolds. Puramatrix™ is a defined, self-assembling peptide hydrogel which instantaneously polymerizes under normal physiological conditions. Here, we assessed the compatibility of Puramatrix™ with dental pulp stem cell (DPSC) growth and differentiation. Methods: DPSC cells were grown in 0.05-0.25% Puramatrix™. Cell viability was measured colorimetrically using the WST-1 assay. Cell morphology was observed in 3D modeling using confocal microscopy. In addition, we used the human tooth slice model with Puramatrix™ to verify DPSC differentiation into odontoblast-like cells, as measured by expression of DSPP and DMP-1. Results: DPSC survived and proliferated in Puramatrix™ for at least three weeks in culture. Confocal microscopy revealed that cells seeded in Puramatrix™ presented morphological features of healthy cells, and some cells exhibited cytoplasmic elongations. Notably, after 21 days in tooth slices containing Puramatrix™, DPSC cells expressed DMP-1 and DSPP, putative markers of odontoblastic differentiation. Significance: Collectively, these data suggest that self-assembling peptide hydrogels might be useful injectable scaffolds for stem cell-based Regenerative Endodontics. © 2012 Academy of Dental Materials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bacterial cellulose (BC) has established to be a remarkably versatile biomaterial and can be used in wide variety of applied scientific endeavours, especially for medical devices. In fact, biomedical devices recently have gained a significant amount of attention because of an increased interest in tissue-engineered products for both wound care and the regeneration of damaged or diseased organs. Due to its unique nanostructure and properties, microbial cellulose is a natural candidate for numerous medical and tissue-engineered applications. Hydrophilic bacterial cellulose fibers of an average diameter of 50 nm are produced by the bacterium Acetobacter xylinum, using a fermentation process. The microbial cellulose fiber has a high degree of crystallinity. Using direct nanomechanical measurement, determined that these fibers are very strong and when used in combination with other biocompatible materials, produce nanocomposites particularly suitable for use in human and veterinary medicine. Moreover, the nanostructure and morphological similarities with collagen make BC attractive for cell immobilization and cell support. The architecture of BC materials can be engineered over length scales ranging from nano to macro by controlling the biofabrication process. The chapter describes the fundamentals, purification and morphological investigation of bacterial cellulose. This chapter deals with the modification of microbial cellulose and how to increase the compatibility between cellulosic surfaces and a variety of plastic materials. Furthermore, provides deep knowledge of fascinating current and future applications of bacterial cellulose and their nanocomposites especially in the medical field, materials with properties closely mimic that of biological organs and tissues were described. © Springer-Verlag Berlin Heidelberg 2013.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is quite difficult to obtain non-trivial chiral symmetry breaking solutions for the quark gap equation in the presence of dynamically generated gluon masses. An effective confining propagator has recently been proposed by Cornwall in order to solve this problem. We study phenomenological consequences of this approach, showing its compatibility with the experimental data. We argue that this confining propagator should be restricted to a small region of momenta, leading to effective four-fermion interactions at low energy. © 2013 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In Brazil, among the various alternatives for final disposal of sewage sludge, agricultural use is notable for its economy and environmental compatibility. The objective of this study was to evaluate the effect of composted sewage sludge and N parameters on sunflower production after the sixth application of sewage sludge in different doses. The experiment was conducted at the Experimental Farm São Manuel-SP, belonging to the Faculty of Agronomic Sciences, UNESP, Botucatu-SP. The experimental design adopted was randomized blocks, consisting of six treatments and four replications defined as follows: T0 - without nitrogen fertilization; T1 - chemical nitrogen fertilizer in accordance with the recommendation for the crop; T2 - 50% nitrogen derived from sewage sludge and 50% in mineral form; T3 - 100% nitrogen from sewage sludge; T4 - 150% nitrogen from sewage sludge; T5 - 200% nitrogen from sewage sludge. Increasing the dose of sewage sludge and N provided an increase in grain yield, oil and dry matter. The N influenced the increase in the weight of thousand grans.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Breast implants are medical devices that are used to augment breast size or to reconstruct the breast following mastectomy or to correct a congenital abnormality. Breast implants consist of a silicone outer shell and a filler (most commonly silicone gel or saline). Approximately 5 to 10 million women worldwide have breast implants. Histomorphometric study to evaluate the biological tissue compatibility of silicone implants suitable for plastic surgery and the adverse effects and risks of this material. Thirty Wistar white rats received subcutaneous implants and the revestiment of silicone gel Silimed ®®, and randomized into six groups of five animals each, according to the type of implanted material and the time of sacrifice. Eight areas of 60.11mm2 corresponding to the obtained surgical pieces were analyzed, counting mesenchymal cells, eosinophils, and foreign body giant cells, observing an acceptable biocompatibility in all implants, for subsequent statistical analysis by Tukey test. Silicone gel showed inflammation slightly greater than for other groups, with tissue reactions varying from light to moderate, whose result was the formation of a fibrous capsule around the material, recognized by the organism as a foreign body. Despite frequent local complications and adverse outcomes, this research showed that the silicone and top layer presented an acceptable chronic inflammatory reaction, which did not significantly differ from the control group. In general, it is possible to affirm that silicone gel had acceptable levels of biocompatibility, confirmed the rare presence of foreign body giant cells, and when of the rupture, formed a fibrous capsule around the material, separating the material of the organism. © AVICENA 2013.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chemical compatibility between geomembranes and site-specific waste liquids should be assessed since the waste liquids are highly complex mixtures. This paper presents some considerations about the chemical compatibility of geomembranes and some results of mechanical tests in HDPE and PVC geomembranes that were exposed to leachate and chemical residue (niobium). PVC and HDPE geomembranes of two thicknesses were tested: 1.0, 2.0 mm (PVC) and 0.8, 2.5 mm (HDPE). The results obtained show that after exposure the PVC geomembranes (1.0, 2.0 mm) were more rigid and stiffer than fresh samples. The HDPE geomembranes, on the other hand, when exposed to leachate and niobium residue presented increases in deformation. Melt flow index (MFI) tests were also carried out to verify the oxidation. © 2013 ejge.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: In the absence of autologous bone for harvesting, fresh-frozen bone allografts turned into an alternative for bone reconstruction procedures. Purpose: The purpose of this study was to make a histological analysis of fresh-frozen onlay bone allografts (ALs), compared with autografts, in patients who needed maxillary reconstruction prior to dental implants placement. Materials and Methods: Twelve patients with bone deficiencies (width inferior to 4mm) in the sites where the implants were planned were enrolled in the study. From these, six were elected to be treated with autogenous (AT) bone grafts and six with fresh-frozen bone AL. This last group included the patients who had absence of a convenient amount of bone in donor sites. Each patient received from one to six graft blocks, totalling to 12 ATs and 17 ALs. Seven months after grafting procedures, biopsies of the grafts were made using 2-mm internal diameter trephine burs, and processed for histological analysis. One biopsy was retrieved from each patient. Results: Clinically, all grafts were found to be firm in consistency and well-incorporated to the receptor bed. Histological analysis showed a large amount of necrotic bone surrounded by few spots of new-formed bone in the AL group, suggesting low rate of graft remodeling. In the AT group, an advanced stage of bone remodeling was seen. Conclusions: Human fresh-frozen bone block AL showed clinical compatibility for grafting procedures, although associated to slow remodeling process. Further studies are needed to define, at long term, the remodeling process chronology the clinical longitudinal results for fresh-frozen bone AL. Copyright © 2013 Wiley Periodicals, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Includes bibliography