921 resultados para Vigna unguiculata ssp unguiculata


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aim: Models project that climate warming will cause the tree line to move to higher elevations in alpine areas and more northerly latitudes in Arctic environments. We aimed to document changes or stability of the tree line in a sub-Arctic model area at different temporal and spatial scales, and particularly to clarify the ambiguity that currently exists about tree line dynamics and their causes. Location: The study was conducted in the Tornetrask area in northern Sweden where climate warmed by 2.5 °C between 1913 and 2006. Mountain birch (Betula pubescens ssp. czerepanovii) sets the alpine tree line. Methods: We used repeat photography, dendrochronological analysis, field observations along elevational transects and historical documents to study tree line dynamics. Results: Since 1912, only four out of eight tree line sites had advanced: on average the tree line had shifted 24 m upslope (+0.2 m/year assuming linear shifts). Maximum tree line advance was +145 m (+1.5 m/year in elevation and +2.7 m/year in actual distance), whereas maximum retreat was 120 m downslope. Counter-intuitively, tree line advance was most pronounced during the cooler late 1960s and 1970s. Tree establishment and tree line advance were significantly correlated with periods of low reindeer (Rangifer tarandus) population numbers. A decreased anthropozoogenic impact since the early 20th century was found to be the main factor shaping the current tree line ecotone and its dynamics. In addition, episodic disturbances by moth outbreaks and geomorphological processes resulted in descent and long-term stability of the tree line position, respectively. Main conclusions: In contrast to what is generally stated in the literature, this study shows that in a period of climate warming, disturbance may not only determine when tree line advance will occur but if tree line advance will occur at all. In the case of non-climatic climax tree lines, such as those in our study area, both climate-driven model projections of future tree line positions and the use of the tree line position for bioclimatic monitoring should be used with caution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Aptian-lower Albian succession of the Vocontian Basin (SE France) consists of marine hemipelagic sediments including several black shale horizons. The latter are partly of regional and partly of global distribution. This sedimentary succession records the nannoplankton evolution of the Aptian-early Albian interval and thus provides an excellent opportunity to calibrate the calcareous nannofossil record with Tethyan ammonite and planktic foraminiferal biostratigraphy. The calcareous nannofossil biostratigraphy presented in this paper supports previous zonations, but it also provides a much higher resolution and thus improves the correlation of different black shale horizons on a supraregional scale. Up to 23 major (supraregionally significant) and minor (regionally significant) first and last occurrences of calcareous nannofossil taxa are recognized. Nannoconid abundances decrease rapidly in the upper Lower Aptian (nannoconid crisis I, NCI) and in the middle Upper Aptian (nannoconid crisis II, NCII). Both decreases correlate with carbonate-platform drowning events. The upper Lower Aptian interval above the NCI is characterized by high abundances of large specimens of Assipetra infracretacea and Rucinolithus terebrodentarius probably of supraregional significance. The uppermost Aptian-Lower Albian is characterized by high abundances of the calcareous nannoplankton taxon Repagulum parvidentatum, reflecting boreal influence on the Tethyan Realm. This suggests a temporary decrease in surface-water temperatures in the Vocontian Basin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite a century's knowledge that soluble aluminum (Al) is associated with acid soils and poor plant growth, it is still uncertain how Al exerts its deleterious effects. Hypotheses include reactions of Al with components of the cell wall, plasmalemma, or cytoplasm of cells close to the root tip, thereby reducing cell expansion and root growth. Digital microscopy was used to determine the initial injuries of soluble Al to mungbean (Vigna radiata L.) roots. Roots of young seedlings were marked with activated carbon particles and grown in 1 mm CaCl2 solution at pH 6 for ca. 100 min (control period), and AlCl3 solution was added to ensure a final concentration of 50 muM Al (pH 4). Further studies were conducted on the effects of pH 4 with and without 50 muM Al. Four distinct, but possibly related, initial detrimental effects of soluble Al were noted. First, there was a 56-75% reduction in the root elongation rate, first evident 18-52 min after the addition of Al, root elongation continuing at a decreased rate for ca. 20 It. Decreasing solution pH from 6 to 4 increased the root elongation rate 4-fold after 5 min, which decreased to close to the original rate after 130 min. The addition of Al during the period of rapid growth at pH 4 reduced the root elongation rate by 71% 14 min after the addition of Al. The activated carbon marks on the roots showed that, during the control period, the zone of maximum root growth occurred at 2,200-5,100 mum from the root tip (i.e. the cell elongation zone). It was there that Al first exerted its detrimental effect and low pH increased root elongation. Second, soluble Al prevented the progress of cells from the transition to the elongation phase, resulting in a considerable reduction of root growth over the longer term. The third type of soluble Al injury occurred after exposure for ca. 4 h to 50 mum Al when a kink developed at 2,370 mum from the root tip. Fourth, ruptures of the root epidermal and cortical cells at 1,900-2,300 mum from the tip occurred greater than or equal to4.3 h after exposure to soluble Al. The timing and location of Al injuries support the contention that Al initially reduces cell elongation, thus decreasing root growth and causing damage to epidermal and cortical cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective. To determine whether squamous cervical cancers exhibit mutations or deletions in MHC class I genes or transport-associated protein (TAP) genes. Methods. Polymerase chain reaction based protocols were used to examine HLA class I and TAP genes in a panel of cervical tumours, using DNA from corresponding blood samples as controls. SSP-PCR protocols were similarly used for examination of all TAP alleles in tumour and blood samples. Results. In a series of cervical carcinomas, 7 of 27 (26%) exhibited mutations in HLA-A genes, while 12 of 23 (52%) exhibited mutations in TAP genes. HLA gene mutations were detected in 2 of 14 CIN2-3 lesions, and TAP gene mutations in none of 14, a frequency significantly less than observed in the cervical carcinoma samples (P < 0.01). The TAP 2A/2B heterozygous genotype was observed with increased frequency in patients with cervical cancer compared to population controls (P < 0.02). Conclusion. These data suggest that TAP genes may be relevant to evolution of cervical cancer from precursor lesions. (C) 2004 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mungbean (Vigna radiata L.), as a dryland grain legume, is exposed to varying timing and severity of water deficit, which results in variability in grain yield, nitrogen accumulation and grain quality. In this field study, mungbean crops were exposed to varying timing and severity of water deficit in order to examine: (1) contribution of the second flush of pods to final grain yield with variable timing of relief from water deficit, (2) the sensitivity to water deficit of the accumulation of biomass and nitrogen (N) and its partitioning to grain, and (3) how the timing of water deficit affects the pattern of harvest index (HI) increase through pod filling. The results showed that the contribution of the second flush to final yield is highly variable (1-56%) and can be considerable, especially where mid-season stress is relieved at early pod filling. The capacity to produce a second flush of pods did not compensate fully for yield reduction due to water stress. Relief from mid-season stress also resulted in continued leaf production, N-2 fixation and vegetative biomass accumulation during pod filling. Despite the wide variation in the degree of change in vegetative biomass and N during pod filling, there were strong relationships between grain yield and net-above-ground biomass at maturity, and grain N and above-ground N at maturity. Only in the extreme situations were HI and nitrogen HI affected noticeably. In those treatments where there was a large second flush of pods, there was a pronounced biphasic pattern to pod number production, with HI also progressing through two distinct phases of increase separated by a plateau. The proportion of grain yield contributed to by biomass produced before pod filling varied from 0 to 61% with the contribution greatest under terminal water deficit. There was a larger effect of water deficit on N accumulation, and hence N-2 fixation, than on biomass accumulation. The study confirmed the applicability of a number of long-standing physiological concepts to the analysis of the effect of water deficit on mungbean, but also highlighted the difficulty of accounting for timing effects of water deficit where second flushes of pods alter canopy development, biomass and yield accumulation, and N dynamics. Crown Copyright (C) 2003 Published by Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Understanding how insect pests forage on their food plants can help optimize management strategies. Helicoverpa armigera (Hubner) (Lep., Noctuidae) is a major polyphagous pest of agricultural crops worldwide. The immature stages feed and forage on crops at all stages of plant development, damaging fruiting and non-fruiting structures, yet very little is known about the influence of host type or stage on the location and behaviour of larvae. Through semi-continuous observation, we evaluated the foraging (movement and feeding) behaviours of H. armigera first instar larvae as well as the proportion of time spent at key locations on mungbean [Vigna radiata (L.) Wilczek] and pigeon pea [Cajanus cajan (L.) Millspaugh] of differing developmental stages: seedling- and mature (flowering/pod fill)-stage plants. Both host type and age affected the behaviour of larvae. Larvae spent more time in the upper parts of mature plants than on seedlings and tended to stay at the top of mature plants if they moved there. This difference was greater in pigeon pea than in mungbean. The proportion of time allocated to feeding on different parts of a plant differed with host and age. More feeding occurred in the top of mature pigeon pea plants but did not differ between mature and seedling mungbean plants. The duration of key behaviours did not differ between plant ages in either crop type and was similar between hosts although resting bouts were substantially longer on mungbeans. Thus a polyphagous species such as H. armigera does not forage in equivalent ways on different hosts in the first instar stage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of soil puddling on growth of lowland rice (Oryza sativa) and post-rice mungbean (Vigna radiata) was investigated using mini rice beds under controlled glasshouse conditions. Each mini rice bed was approximately 1 m(3) in size. Three different soil types were used: a well-drained, permeable loam; a hardsetting, structurally unstable silty loam; and a medium clay. Rice yields were reduced by low puddling compared with high puddling intensity on the loam but not affected on the heavier textured soils (silty loam and clay). Yield of mungbean was reduced on highly puddle, structurally unstable soil, indicating that puddling should be reduced on structurally unstable soils. Under glasshouse condition where crop establishment was not a limiting factor and plant available water in 0.65 m of soil was 100 mm, mungbean yields of >1 t/ha were achieved. However, under conditions where subsoil water reserves were depleted for the production of vegetative biomass during initial optimal growing condition, grain yield remained well below 1 t/ha.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To examine the genetic controls of endosperm (ES) specificity, several cereal seed storage protein (SSP) promoters were isolated and studied using a transient expression analysis system. An oat globulin promoter (AsGlo1) capable of driving strong ES-specific expression in barley and wheat was identified. Progressive 5' deletions and cis element mutations demonstrated that the mechanism of specificity in the AsGlo1 promoter was distinct from that observed in glutelin and prolamin promoters. A novel interrupted palindromic sequence, ACATGTCAT-CATGT, was required for ES specificity and substantially contributed to expression strength of the AsGlo1 promoter. This sequence was termed the endosperm specificity palindrome (ESP) element. The GCN4 element, which has previously been shown to be required for ES specificity in cereal SSP promoters, had a quantitative role but was not required for tissue specificity. The 960-bp AsGlo1 promoter and a 251-bp deletion containing the ESP element also drove ES-specific expression in stably transformed barley. Reporter gene protein accumulated at very high levels (10% of total soluble protein) in ES tissues of plants transformed with an AsGlo1:GFP construct. Expression strength and tissue specificity were maintained over five transgenic generations. These attributes make the AsGlo1 promoter an ideal promoter for biotechnology applications. In conjunction with previous findings, our data demonstrate that there is more than one genetically distinct mechanism by which ES specificity can be achieved in cereal SSP promoters, and also suggest that there is redundancy between transcriptional and post-transcriptional tissue specificity mechanisms in cereal globulin genes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the horse, carbohydrate overload is thought to play an integral role in the onset of laminitis by drastically altering the profile of bacterial populations in the hindgut. The objectives of this study were to develop and validate microbial ecology methods to monitor changes in bacterial populations throughout the course of experimentally induced laminitis and to identify the predominant oligofructose-utilizing organisms. Laminitis was induced in five horses by administration of oligofructose. Faecal specimens were collected at 8 h intervals from 72 h before to 72 h after the administration of oligofructose. Hindgut microbiota able to utilize oligofructose were enumerated throughout the course of the experiment using habitat-simulating medium. Isolates were collected and representatives identified by 16S rRNA gene sequencing. The majority of these isolates collected belonged to the genus Streptococcus, 91% of which were identified as being most closely related to Streptococcus infantarius ssp. coli. Furthermore, S. infantarius ssp. coli was the predominant oligofructose-utilizing organism isolated before the onset of lameness. Fluorescence in situ hybridization probes developed to specifically target the isolated Streptococcus spp. demonstrated marked population increases between 8 and 16 h post oligofructose administration. This was followed by a rapid population decline which corresponded with a sharp decline in faecal pH and subsequently lameness at 24-32 h post oligofructose administration. This research suggests that streptococci within the Streptococcus bovis/equinus complex may be involved in the series of events which precede the onset of laminitis in the horse.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Selection of biocontrol agents that are adapted to the climates in areas of intended release demands a thorough analysis of the climates of the source and release sites. We present a case study that demonstrates how use of the CLIMEX software can improve decision making in relation to the identification of prospective areas for exploration for agents to control the woody weed, prickly acacia Acacia nilotica ssp. indica in the arid areas of north Queensland.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We hypothesized that the four rotation crops: wheat (Triticum aestivum L.), sorghum [Sorghum bicolor (L.) Merr.], lablab [Lablab purpureus (L.) Sweet] and mung bean [ Vigna radiata (L.) R. Wilczek] differ in their ability to repair soil structure. The study was conducted on a Typic Haplustert, Queensland, Australia, locally termed a Black Earth and considered a prime cropping soil. Large (0.5-m depth by 0.3-m diam.) soil cores, collected from compacted wheel furrows in an irrigated cotton (Gossypium hirsutum L.) field, were subjected to three, six, or nine wet-dry cycles that simulated local flood irrigation practices. After each cycle, soil profiles were sampled for clod bulk density, image analysis of soil structure, and evapotranspiration. Generally, all crops improved soil structure over the initial field condition but lablab and mung bean gave improvements to greater depths and more rapidly than wheat and sorghum. Mung bean and lablab caused up to a threefold increase in clod porosity in the 0.1- to 0.4-m soil layer after only three wet-dry cycles, whereas sorghum required nine wet-dry cycles to increase clod porosity in only the 0.2- to 0.3-m layer, and wheat gave no improvement even after nine wet-dry cycles. Image analysis of soil structure showed that lablab and mung bean rapidly (by three wet-dry cycles) produced smaller peds with more interconnected pore space than wheat and sorghum. By nine wet-dry cycles, sorghum achieved deep cracking of the soil but the material between the cracks remained large and dense. Evapotranspiration was double under lablab and mung bean compared with wheat and sorghum. Our results indicate greater cycles of wetting and drying under lablab and mung bean than wheat and sorghum that have led to rapid repair of soil compaction.