970 resultados para DNA Damage


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Brazil is the third largest producer of cashew nuts in the world. Despite the social and economic importance of the cashew nut, its production is still carried out artisanally. One of the main problems encountered in the cashew production chain are the conditions under which the roasting of the nut occurs to obtain the kernel from the shell. In the present study was conducted a biomonitoring of the genotoxic and cytotoxicity effects associated with the elements from the cashew nut roasting in João Câmara - RN, semi-arid region of Brazil. To assess the genotoxic was used the bioassay of micronucleus (MN) in Tradescantia pallida. In addition, it was performed a comparative between the Tradescantia pallida and KU-20 and other biomarkers of DNA damage, such as the nucleoplasmic bridges (NBP) and nuclear fragments (NF) were quantified. The levels of particulate matter (PM1.0, PM2.5, PM10) and black carbon (BC) were also measured and the inorganic chemical composition of the PM2.5 collected was determined using X-ray fluorescence spectrometry analysis and the assessment of the cytotoxicity by MTT assay and exclusion method by trypan blue. . For this purpose, were chosen: the Amarelão community where the roasting occurs and the Santa Luzia farm an area without influence of this process. The mean value of PM2.5 (Jan 2124.2 μg/m3; May 1022.2 μg/m3; Sep 1291.9 μg/m3) and BC (Jan 363.6 μg/m3; May 70.0 μg/m3; Sep 69.4 μg/m3) as well as the concentration of the elements Al, Si, P, S, Cl, K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, Zn, Se, Br and Pb obtained at Amarelão was significantly higher than at Santa Luzia farm. The genotoxicity tests with T. pallida indicated a significant increase in the number of MN, NBP and NF and it was found a negative correlation between the frequency of these biomarkers and the rainfall. The concentrations of 200 μg/mL and 400 μg/mL of PM2.5 were cytotoxic to MRC-5 cells. All together, the results indicated genotoxicity and citotoxicity for the community of Amarelão, and the high rates of PM2.5 considered a potential contributor to this effect, mainly by the high presence of transition metals, especially Fe, Ni, Cu, Cr and Zn, these elements have the potential to cause DNA damage. Other nuclear alterations, such as the NPBs and NFs may be used as effective biomarkers of DNA damage in tetrads of Tradescantia pallida. The results of this study enabled the identification of a serious occupational problem. Accordingly, preventative measures and better practices should be adopted to improve both the activity and the quality of life of the population. These measures are of fundamental importance for the sustainable development of this activity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Riboflavin is a vitamin very important in aerobic organisms, as a precursor of many coenzymes involved in the electron transporter chain. However, after photosensitization of riboflavin with UV or visible light, it generates reactive oxygen species (ROS), which can oxidize the DNA. The repair of oxidative lesions on DNA occurs through the base excision repair pathway (BER), where APE1 endonuclease plays a central role. On the other hand, the nucleotide excision repair pathway (NER) repairs helix-distorting lesions. Recently, it was described the participation of NERproteins in the repair of oxidative damage and in stimulation of repair function fromAPE1. The aim of this research was to evaluate the cytotoxic effects of photosensitized riboflavin (RF*) in cells proficient and deficient in NER, correlating with APE1 expression. For this propose, the cells were treated with RF* and it was performed the cell viability assay, extraction of whole proteins, cells fractionation, immunoblotting, indirect immunofluorescence and analysis of polymorphisms of BER gens. The results evidenced that cells deficient in XPA and CSB proteins were more sensitive to RF*. However, XPC-deficient cells presented similar resistance to MRC5- SV cells, which is proficient in NER. These results indicate that XPA and CSB proteins have an important role on repair of oxidative lesions induced by RF*. Additionally, it was evidenced that single nucleotide polymorphisms (SNPs) in BER enzymes may influence in sensitivity of NER-deficient cell lines. Concerning the APE1 expression, the results showed that expression of this protein after treatment with RF* only changed in XPC-deficient cells. Though, it was observed that APE1 is recruited and is bound to chromatin in MRC5-SV and XPA cells after treatment with RF*. The results also showed the induction of DNA damage after treatment with RF*, through the analysis of-H2AX, since the treatment promoted an increase of endogenous levels of this phosphorylated protein, which acts signaling double strand-break on DNA. On the other hand, in XPC-deficient cells, regardless of resistance of RF*, the endogenous levels of APE1 are extremely reduced when compared with other cell lines and APE1 is not bound to chromatin after treatment with RF*. These results conclude that RF* was able to induce cell death in NERdeficient cells, where XPA and CSB cells were more sensitive when compared with MRC5-SV and XPC-deficient cells. This last result is potentially very interesting, since XPC-deficient cell line presents low levels of APE1. Additionally, the results evidenced that APE1 protein can be involved in the repair of oxidative damage induced by RF*, because APE1 is recruited and bound strongly to chromatin after treatment.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Reactive oxygen species (ROS) are continuously generated and can be derived from cellular metabolism or induced by exogenous factors, in addition, have the capacity to damage molecules like DNA and proteins. BER is considered the main route of DNA damage oxidative repair, however, several studies have demonstrated the importance of the proteins participation of other ways to correct these injuries. NER enzymes deficiency, such as CSB and XPC, acting in the damage recognition step in the two subways this system influences the effectiveness of oxidative damage repair. However, the mechanisms by which cells deficient in these enzymes respond to oxidative stress and its consequences still need to be better understood. Thus, the aim of this study was to perform a proteomic analysis of cell lines proficient and deficient in NER, exposed to oxidative stress, in order to identify proteins involved, directly or not, in response to oxidative stress and DNA repair. For this, three strains of human fibroblasts, MRC5-SV, CS1AN (CSBdeficient) and XP4PA (XPC-deficient) were treated with photosensitized riboflavin and then carried out the differentially expressed proteins identification by mass spectrometry. From the results, it was observed in MRC5-SV increase expression in most of the proteins involved in cellular defense, an expected response to a normal cell line subjected to stress. CS1AN showed a response disjointed, it is not possible to establish many interactions between the proteins identified, may be one explanation for their sensitivity to treatment with riboflavin and other oxidants and increased cell death probably by induction of pro-apoptotic pathways. Already XP4PA showed higher expression of apoptosis-blocking proteins, as there was inhibition or reduced expression of others involved with the activation of this process, suggesting the activation of an anti-apoptotic mechanism in this lineage, which may help explain the high susceptibility to develop cancers in XPC individuals. These results also contribute to elucidate action mechanisms of NER in oxidative damage and the understanding of important routes in the oxidative stress correlation, repair and malignant tumors formation

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bacterial cellulose (BC) has a wide range of potential applications, namely as temporary substitute skin in the treatment of skin wounds, such as burns, ulcers and grafts. Surface properties determine the functional response of cells, an important factor for the successful development of biomaterials. This work evaluates the influence of bacterial cellulose surface treatment by plasma (BCP) on the cellular behavior and its genotoxicity potential. The modified surface was produced by plasma discharge in N2 and O2 atmosphere, and the roughness produced by ion bombardment characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Cell adhesion, viability and proliferation on BCP were analysed using crystal violet staining and the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium (MTT) method. Genotoxicity was evaluated using the comet and cytokinesis block micronucleus assay. The results show that the plasma treatment changed surface roughness, producing an ideal cell attachment, evidenced by more elongated cell morphology and improved proliferation. The excellent biocompatibility of BCP was confirmed by genotoxicity tests, which showed no significant DNA damage. The BCP has therefore great potential as a new artificial implant

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The occurrence of human cancer in the municipality of Lucrécia (RN, Brazil) has shown high frequencies (INCA, 2007). Tests of micronucleus (MN) and nuclear abnormalities (NA) were performed to assess the genotoxic potential of water from the Lucrécia dam, which is located in a semi-arid region under the influence of crop irrigation and irregular rainfall. Water samples were collected in this source for analyzing the concentration of cyanobacteria, metals and radioactivity. Erythrocytes of Nile tilapia (Oreochromis niloticus) were collected in dam and cells of human oral mucosa in the urban area of this municipality for the bioassays of MN and NA. In fish were also analyzed concentrations of metals in samples of liver and gills. The genotoxicity tests with biological samples of fish and humans have shown significant increases in the frequencies of MN and NA (p ≤ 0.05) and are indicative of increased DNA damage in relation to the control groups. In conclusion, the results obtained from water samples and biological municipality of Lucrécia indicates that the presence of chemical and microbiological pollutants, and increase of genotoxic in human of this municipality. We suggest the implementation of advanced water treatment, to prevent further degradation of the aquatic environment and decrease in the life quality. This research of environmental quality assessment was performed in order to contemplate a multi and interdisciplinary character of this water resource and that can induce genotoxic damage in the organisms in this study region

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aim: The aim of this work was to investigate the hypothesis that catechol and 3MC inhibit FADH2-linked basal respiration in mitochondria isolated from rat liver and brain homogenates. Moreover, catechol ability to induce DNA damage in rat brain cells through the comet assay (alkaline single-cell gel electrophoresis assay) was also observed. Methods: Two different catechols were evaluated: pirocatechol (derived from benzene) and 3-methylcatechol (derived from toluene); rat liver and brain homogenates were incubated with 1mM catechol at pH 7.4 for up to 30 minutes. After that, mitochondrial fractions were isolated by differential centrifugation. Basal oxygen uptake was measured using a Clark-type electrode after the addition of 10 mM sodium succinate for a period of 12 minutes. In additional experiments, rat brain cells were treated with 1, 5 and 10mM pirocatechol for up to 20 minutes at 37º C, and submitted to electrophoresis. Results: Catechols (pirocatechol and 3methylcatechol) induced a time-dependent partial inhibition of FADH2-linked basal mitochondrial respiration. Indeed, pirocatechol was able to produce a dosedependent DNA oxidative damage in rat brain cells by 2 and 4 injury levels. These results suggest that reactive oxygen species generated by the oxidation of catechols, induced an impairment on mitochondrial respiration and a DNA damage, which might be related to their citotoxicity. Conclusion: Catechols produced an inhibition of basal respiration associated to FADH2 in isolated liver and brain mitochondria; 3-methylcatechol, at the same concentration, produced similar toxicity in the mitochondrial model. Indeed, pirocatechol induced a DNA damage in rat brain cells, mainly observed in comets formation and consequent DNA degradation

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ethnopharmacological relevance: The species Qualea grandiflora and Qualea multiflora, which belong to the Vochysiaceae family, are common in the Brazilian savannah (Cerrado biome), and the local inhabitants use these species to treat external ulcers and gastric diseases and as an anti-inflammatory agent. Studies have demonstrated that these plants contain compounds that exhibit pharmacological activities; however, the risks associated with their consumption are not known.Material and methods: In the present study, the mutagenicity of polar and apolar extracts from Qualea grandiflora and Qualea multiflora were assessed by employing the Ames assay with and without metabolic activation. Additionally, phytochemical analyses (HPLC-ESI-IT-MS, HPLC-UV-PDA and GC-IT-MS) were performed to identify the chemical constituents present in these species, including the evaluation of physico-chemical properties, such as polarity or apolarity of the organic compounds, which are related to each fraction obtained. These studies provide important information regarding the biochemical behaviour of these compounds.Results: All extracts exhibited mutagenicity, inducing frameshift mutations and base substitutions in DNA. Phytochemical analysis identified terpenes, ellagic acid derivatives and phytosteroids.Conclusions: The mutagenicity observed might be due to the presence of pentacyclic triterpenes and polyphenols, which are able to generate reactive oxygen species (ROS) and result in the potential to cause DNA damage. The genetic risk identified in this present work shows that special attention should be considered for the use of compounds obtained from these plant species in medicinal treatments. Further studies must be conducted to identify safe therapeutic doses. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Lycopene is a natural carotenoid, free radical scavenger, and presents protective effects by inhibiting oxidative DNA damage. The objective of the current study was to investigate the cytogenetic effects of a single acute and four daily gavage administrations of lycopene, and to examine possible protective effects on chromosomal damage induced by the antitumor drug cisplatin (cDDP) in rat bone marrow cells. The animals were divided into treatment groups, with three lycopene doses in the acute treatment (2, 4, and 6 mg/kg b.w.), three lycopene doses in the subacute treatment (0.5, 1.0, and 1.5 mg/kg b.w.) with and without cDDP (5 mg/kg b.w. i.p.), and respective controls. The results indicated that lycopene is neither cytotoxic nor clastogenic when compared with the negative controls (P > 0.01). cDDP-treated animals submitted to acute and subacute treatments with different lycopene doses showed a significant reduction (p < 0.01) in the number of abnormal metaphases when compared with the animals treated only with cDDP. The protective effects of lycopene on cDDP-induced chromosomal damage may be attributed to its antioxidant activity. These results suggest that this carotenoid may prove useful in reducing some of the toxic effects associated with certain classes of chemotherapeutic agents. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The contamination of the waters resources for wastewater from industrial, agricultural, and domestic sources is a serious environment problem, compromising its use for human consumption and agriculture. The Extremoz-RN Lake is an important freshwater source for the supply of the city of Natal, supplying a population of approximately 160,000 habitants. This aquatic body is located near an industrial pole which can be a serious risk factor for quality of its waters. The objectives of this study were examined the genotoxicity of Extremoz Lake between September of 2006 and January of 2008, by a combination of the Allium micronucleus test, piscine micronucleus test and the comet assay in erythrocytes from peripheral blood of Oreochromis niloticus. Additionally, the level of eight different heavy metals was quantified through spectrometry of atomic absorption of flame. The Allium test did not detect increase in the frequencies of micronucleus in none of the analyzed periods, however a strong cytotoxic activity was demonstrated for decrease in mitotic index in the analyses carried in April and July of 2007. Negative results had been detected in the frequencies of micronucleus in O. niloticus. A statistic significant increase was observed in the levels of DNA damage in comet assay carried in July of 2007. The results of the chemical analysis had detected increase in the levels of cadmium, chromium, copper, nickel, lead and zinc in different periods. These results demonstrated an alteration of the water s quality of the Extremoz Lake caused for the contamination for heavy metals and increase of DNA strand breaks. The use of biomonitoring program of the heavy metal and other pollutants with genotoxic potential combinated with genotoxicity assays is recommends.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)