883 resultados para Electrolytes


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Surface pitting occurs when InP electrodes are anodized in KOH electrolytes at concentrations in the range 2 - 5 mol dm-3. The process has been investigated using atomic force microscopy (AFM) and the results correlated with cross-sectional transmission electron microscopy (TEM) and electroanalytical measurements. AFM measurements show that pitting of the surface occurs and the density of pits is observed to increase with time under both potentiodynamic and potentiostatic conditions. This indicates a progressive pit nucleation process and implies that the development of porous domains beneath the surface is also progressive in nature. Evidence for this is seen in plan view TEM images in which individual domains are seen to be at different stages of development. Analysis of the cyclic voltammograms of InP electrodes in 5 mol dm-3 KOH indicates that, above a critical potential for pit formation, the anodic current is predominantly time dependent and there is little differential dependence of the current on potential. Thus, pores continue to grow with time when the potential is high enough to maintain depletion layer breakdown conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The surface properties of InP electrodes were examined following anodization in (NH4)2S and KOH electrolytes. In both solutions, the observation of current peaks in the cyclic voltammetric curves was attributed to selective etching of the substrate and a film formation process. AFM images of samples anodized in the sulfide solution, revealed surface pitting and TEM micrographs revealed the porous nature of the film formed on top of the pitted substrate. After anodization in the KOH electrolyte, TEM images revealed that a porous layer extending 500 nm into the substrate had been formed. Analysis of the composition of the anodic products indicates the presence of In2S3 in films grown in (NH4)2S and an In2O3 phase within the porous network formed in KOH.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The current-voltage characteristics of InP were investigated in (NH4)2S and KOH electrolytes. In both solutions, the observation of current peaks in the cyclic voltammetric curves was attributed to the growth of passivating films. The relationship between the peak currents and the scan rates suggests that the film formation process is diffusion controlled in both cases. The film thickness required to inhibit current flow was found to be much lower on samples anodized in the sulphide solution. Focused ion beam (FIB) secondary electron images of the surface films show that film cracking of the type reported previously for films grown in (NH4)2S is also observed for films grown in KOH. X-ray and electron diffraction measurements indicate the presence of In2O3 and InPO4 in films grown in KOH and In2S3 in films grown in (NH4)2S.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pores are formed electrochemically in n-InP in KCl electrolytes with concentrations of 2 mol dm-3 or greater. The pore morphology is similar to what is seen in other halide-based electrolytes. At low potentials, crystallographically oriented (CO) pores are formed. At higher potentials, current-line oriented (CLO) pores are formed. Crystallographically oriented pore walls are observed for both pore morphologies. When formed at a constant current, potential oscillations are observed which have been correlated to oscillations in the pore width. The CLO pore wall smoothness and overall uniformity increase as KCl concentration is increased. The porous structures formed in KCl compare favourably with those formed in the more acidic or alkaline electrolytes that are typically used to form these structures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the most important components in electrochemical storage devices (batteries and supercapacitors) is undoubtedly the electrolyte. The basic function of any electrolyte in these systems is the transport of ions between the positive and negative electrodes. In addition, electrochemical reactions occurring at each electrode/electrolyte interface are the origin of the current generated by storage devices. In other words, performances (capacity, power, efficiency and energy) of electrochemical storage devices are strongly related to the electrolyte properties, as well as, to the affinity for the electrolyte to selected electrode materials. Indeed, the formulation of electrolyte presenting good properties, such as high ionic conductivity and low viscosity, is then required to enhance the charge transfer reaction at electrode/electrolyte interface (e.g. charge accumulation in the case of Electrochemical Double Layer Capacitor, EDLC). For practical and safety considerations, the formulation of novel electrolytes presenting a low vapor pressure, a large liquid range temperature, a good thermal and chemical stabilities is also required.

This lecture will be focused on the effect of the electrolyte formulation on the performances of electrochemical storage devices (Li-ion batteries and supercapacitors). During which, a summary of the physical, thermal and electrochemical data obtained by our group, recently, on the formulation of novel electrolyte-based on the mixture of an ionic liquid (such as EmimNTf2 and Pyr14NTf2) and carbonate or dinitrile solvents will be presented and commented. The impact of the electrolyte formulation on the storage performances of EDLC and Li-ion batteries will be also discussed to further understand the relationship between electrolyte formulation and electrochemical performances. This talk will also be an opportunity to further discuss around the effects of additives (SEI builder: fluoroethylene carbonate and vinylene carbonate), ionic liquids, structure and nature of lithium salt (LiTFSI vs LiPF6) on the cyclability of negative electrode to then enhance the electrolyte formulation. For that, our recent results on TiSnSb and graphite negative electrodes will be presented and discussed, for example 1,2.

1-C. Marino, A. Darwiche1, N. Dupré, H.A. Wilhelm, B. Lestriez, H. Martinez, R. Dedryvère, W. Zhang, F. Ghamouss, D. Lemordant, L. Monconduit “ Study of the Electrode/Electrolyte Interface on Cycling of a Conversion Type Electrode Material in Li Batteries” J. Phys.chem. C, 2013, 117, 19302-19313

2- Mouad Dahbi, Fouad Ghamouss, Mérièm Anouti, Daniel Lemordant, François Tran-Van “Electrochemical lithiation and compatibility of graphite anode using glutaronitrile/dimethyl carbonate mixtures containing LiTFSI as electrolyte” 2013, 43, 4, 375-385.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel cyclic sulfonium cation-based ionic liquid (IL) with an ether-group appendage and the bis{(trifluoromethyl)sulfonyl}imide anion was synthesised and developed for electrochemical double layer capacitor (EDLC) testing. The synthesis and chemical-physical characterisation of the ether-group containing IL is reported in parallel with a similarly sized alkyl-functionalised sulfonium IL. Results of the chemical-physical measurements demonstrate how important transport properties, i.e. viscosity and conductivity, can be promoted through the introduction of the ether-functionality without impeding thermal, chemical or electrochemical stability of the IL. Although the apparent transport properties are improved relative to the alkyl-functionalised analogue, the ether-functionalised sulfonium cation-based IL exhibits moderately high viscosity, and poorer conductivity, when compared to traditional EDLC electrolytes based on organic solvents (propylene carbonate and acetonitrile). Electrochemical testing of the ether-functionalised sulfonium IL was conducted using activated carbon composite electrodes to inspect the performance of the IL as a solvent-free electrolyte for EDLC application. Good cycling stability was achieved over the studied range and the performance was comparable to other solvent free,
IL-based EDLC systems. Nevertheless, limitations of the attainable performance are primarily the result of sluggish transport properties and a restricted operative voltage of the IL, thus highlighting key aspects of this field which require further attention.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, Pr0.6Sr0.4FeO3-δ -Ce0.9Pr0.1O2-δ (PSFO-CPO) nanofibers were synthesized by a one-step electrospin technique for use in intermediate-temperature solid oxide fuel cell (IT-SOFC) applications. PSFO-CPO nanofibers were produced with a diameter of about 100nm and lengths exceeding tens of microns. The thermal expansion coefficient (TEC) matches with standard GDC electrolytes and the resulting conductivity also satisfies the needs of IT-SOFCs cathodes. EIS analysis of the nanofiber structured electrode gives a polarization resistance of 0.072Ωcm2 at 800°C, smaller than that from the powdered cathode with the same composition. The excellent electrochemical performance can be attributed to the well-constructed microstructure of the nanofiber structured cathode, which promotes surface oxygen diffusion and charge transfer processes. All the results imply that the one-step electrospin method is a facile and practical way of improving the cathode properties and that PSFO-CPO is a promising cathode material for IT-SOFCs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, Sr2Fe1.5Mo0.4Nb0.1O6-δ (SFMNb)-xSm0.2Ce0.8O2-δ (SDC) (x = 0, 20, 30, 40, 50 wt%) composite cathode materials were synthesized by a one-pot combustion method to improve the electrochemical performance of SFMNb cathode for intermediate temperature solid oxide fuel cells (IT-SOFCs). The fabrication of composite cathodes by adding SDC to SFMNb is conducive to providing extended electrochemical reaction zones for oxygen reduction reactions (ORR). X-ray diffraction (XRD) demonstrates that SFMNb is chemically compatible with SDC electrolytes at temperature up to 1100 °C. Scanning electron microscope (SEM) indicates that the SFMNb-SDC composite cathodes have a porous network nanostructure as well as the single phase SFMNb. The conductivity and thermal expansion coefficient of the composite cathodes decrease with the increased content of SDC, while the electrochemical impedance spectra (EIS) exhibits that SFMNb-40SDC composite cathode has optimal electrochemical performance with low polarization resistance (Rp) on the La0.9Sr0.1Ga0.8Mg0.2O3 electrolyte. The Rp of the SFMNb-40SDC composite cathode is about 0.047 Ω cm2 at 800 °C in air. A single cell with SFMNb-40SDC cathode also displays favorable discharge performance, whose maximum power density is 1.22 W cm-2 at 800 °C. All results indicate that SFMNb-40SDC composite material is a promising cathode candidate for IT-SOFCs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract The development of high voltage electrolytes is one of the key aspects for increasing both energy and power density of electrochemical double layer capacitors (EDLCs). The usage of blends of ionic liquids and organic solvents has been considered as a feasible strategy since these electrolytes combine high usable voltages and good transport properties at the same time. In this work, the ionic liquid 1-butyl-1-methylpyrrolidinium bis{(trifluoromethyl)sulfonyl}imide ([Pyrr14][TFSI]) was mixed with two nitrile-based organic solvents, namely butyronitrile and adiponitrile, and the resulting blends were investigated regarding their usage in electrochemical double layer capacitors. Both blends have a high electrochemical stability, which was confirmed by prolonged float tests at 3.2 V, as well as, good transport properties. In fact, the butyronitrile blend reaches a conductivity of 17.14 mS·cm−1 and a viscosity of 2.46 mPa·s at 20 °C, which is better than the state-of-the-art electrolyte (1 mol·dm−3 of tetraethylammonium tetrafluoroborate in propylene carbonate).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electrochemical double layer capacitors (EDLCs), also known as supercapacitors, are promising energy storage devices, especially when considering high power applications [1]. EDLCs can be charged and discharged within seconds [1], feature high power (10 kW·kg-1) and an excellent cycle life (>500,000 cycles). All these properties are a result of the energy storage process of EDLCs, which relies on storing energy by charge separation instead of chemical redox reactions, as utilized in battery systems. Upon charging, double layers are forming at the electrode/electrolyte interface consisting of the electrolyte’s ions and electric charges at the electrode surface.In state-of-the-art EDLC systems activated carbons (AC) are used as active materials and tetraethylammonium tetrafluoroborate ([Et4N][BF4]) dissolved in organic solvents like propylene carbonate (PC) or acetonitrile (ACN) are commonly used as the electrolyte [2]. These combinations of materials allow operative voltages up to 2.7 V - 2.8 V and an energy in the order of 5 Wh·kg-1[3]. The energy of EDLCs is dependent on the square of the operative voltage, thus increasing the usable operative voltage has a strong effect on the delivered energy of the device [1]. Due to their high electrochemical stability, ionic liquids (ILs) were thoroughly investigated as electrolytes for EDLCs, as well as, batteries, enabling high operating voltages as high as 3.2 V - 3.5 V for the former [2]. While their unique ionic structure allows the usage of neat ILs as electrolyte in EDLCs, ILs suffer from low conductivity and high viscosity increasing the intrinsic resistance and, as a result, a lower power output of the device. In order to overcome this issue, the usage of blends of ionic liquids and organic solvents has been considered a feasible strategy as they combine high usable voltages, while still retaining good transport properties at the same time.In our recent work the ionic liquid 1-butyl-1-methylpyrrolidinium bis{(trifluoromethyl)sulfonyl}imide ([Pyrr14][TFSI]) was combined with two nitrile-based organic solvents, namely butyronitrile (BTN) and adiponitrile (ADN), and the resulting blends were investing regarding their usage in electrochemical double layer capacitors [4,5]. Firstly, the physicochemical properties were investigated, showing good transport properties for both blends, which are similar to the state-of-the-art combination of [Et4N][BF4] in PC. Secondly, the electrochemical properties for EDLC application were studied in depth revealing a high electrochemical stability with a maximum operative voltage as high as 3.7 V. In full cells these high voltage organic solvent based electrolytes have a good performance in terms of capacitance and an acceptable equivalent series resistance at cut-off voltages of 3.2 and 3.5 V. However, long term stability tests by float testing revealed stability issues when using a maximum voltage of 3.5 V for prolonged time, whereas at 3.2 V no such issues are observed (Fig. 1).Considering the obtained results, the usage of ADN and BTN blends with [Pyrr14][TFSI] in EDLCs appears to be an interesting alternative to state-of-the-art organic solvent based electrolytes, allowing the usage of higher maximum operative voltages while having similar transport properties to 1 mol∙dm-3 [Et4N][BF4] in PC at the same time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Boron-doped diamond is a promising electrode material for a number of applications providing efficient carrier transport, a high stability of the electrolytic performance with time, a possibility for dye-sensitizing with photosensitive molecules, etc. It can be functionalized with electron donor molecules, like phthalocyanines or porphyrins, for the development of light energy conversion systems. For effective attachment of such molecules, the diamond surface has to be modified by plasma- or photo-chemical processes in order to achieve a desired surface termination. In the present work, the surface modifications of undoped and boron-doped nanocrystalline diamond (NCD) films and their functionalization with various phthalocyanines (Pcs) were investigated. The NCD films have been prepared by hot filament chemical vapor deposition (HFCVD) on silicon substrates and were thereafter subjected to modifications with O2 or NH3 plasmas or UV/O3 treatments for exchange of the H-termination of the as-grown surface. The effectiveness of the modifications and their stability with time during storage under different ambients were studied by contact angle measurements and X-ray photoelectron spectroscopy (XPS). Furthermore, the surface roughness after the modifications was investigated with atomic force microscopy (AFM) and compared to that of as-grown samples in order to establish the appearance of etching of the surface during the treatment. The as-grown and the modified NCD surfaces were exposed to phthalocyanines with different metal centers (Ti, Cu, Mn) or with different side chains. The results of the Pc grafting were investigated by XPS and Raman spectroscopy. XPS revealed the presence of nitrogen stemming from the Pc molecules and traces of the respective metal atoms with ratios close to those in the applied Pc. In a next step Raman spectra of Ti-Pc, Cu-Pc and Mn-Pc were obtained with two different excitation wavelengths (488 and 785 nm) from droplet samples on Si after evaporation of the solvent in order to establish their Raman fingerprints. The major differences in the spectra were assigned to the effect of the size of the metal ion on the structure of the phthalocyanine ring. The spectra obtained were used as references for the Raman spectra of NCD surfaces grafted with Pc. Finally, selected boron doped NCD samples were used after their surface modification and functionalization with Pc for the preparation of electrodes which were tested in a photoelectrochemical cell with a Pt counter electrode and an Ag/AgCl reference electrode. The light sources and electrolytes were varied to establish their influence on the performance of the dye-sensitized diamond electrodes. Cyclic voltammetry measurements revealed broad electrochemical potential window and high stability of the electrodes after several cycles. The open circuit potential (OCP) measurements performed in dark and after illumination showed fast responses of the electrodes to the illumination resulting in photocurrent generation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In recent years, nanoscience and nanotechnology has emerged as one of the most important and exciting frontier areas of research interest in almost all fields of science and technology. This technology provides the path of many breakthrough changes in the near future in many areas of advanced technological applications. Nanotechnology is an interdisciplinary area of research and development. The advent of nanotechnology in the modern times and the beginning of its systematic study can be thought of to have begun with a lecture by the famous physicist Richard Feynman. In 1960 he presented a visionary and prophetic lecture at the meeting of the American Physical Society entitled “there is plenty of room at the bottom” where he speculated on the possibility and potential of nanosized materials. Synthesis of nanomaterials and nanostructures are the essential aspects of nanotechnology. Studies on new physical properties and applications of nanomaterials are possible only when materials are made available with desired size, morphology, crystal structure and chemical composition. Cerium oxide (ceria) is one of the important functional materials with high mechanical strength, thermal stability, excellent optical properties, appreciable oxygen ion conductivity and oxygen storage capacity. Ceria finds a variety of applications in mechanical polishing of microelectronic devices, as catalysts for three-way automatic exhaust systems and as additives in ceramics and phosphors. The doped ceria usually has enhanced catalytic and electrical properties, which depend on a series of factors such as the particle size, the structural characteristics, morphology etc. Ceria based solid solutions have been widely identified as promising electrolytes for intermediate temperature solid oxide fuel cells (SOFC). The success of many promising device technologies depends on the suitable powder synthesis techniques. The challenge for introducing new nanopowder synthesis techniques is to preserve high material quality while attaining the desired composition. The method adopted should give reproducible powder properties, high yield and must be time and energy effective. The use of a variety of new materials in many technological applications has been realized through the use of thin films of these materials. Thus the development of any new material will have good application potential if it can be deposited in thin film form with the same properties. The advantageous properties of thin films include the possibility of tailoring the properties according to film thickness, small mass of the materials involved and high surface to volume ratio. The synthesis of polymer nanocomposites is an integral aspect of polymer nanotechnology. By inserting the nanometric inorganic compounds, the properties of polymers can be improved and this has a lot of applications depending upon the inorganic filler material present in the polymer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With the prohibition of the use of radioactive lightning conductor in Brazil, this material passed to be collected and stored as radioactive waste in the waste deposits of The Brazilian National Nuclear Energy Commission (CNEN). The majority of these lightning conductor used as radioactive source 241Am with activity varying of 1 the 5 mCi. In this work are presented preliminary studies by recovering of 241Am through the electroplating technique, in order to posterior use as sources to portable X-rays fluorescence spectrometer. The 241Am sources have been removed from lightning conductor and dissolved in acid solution. The solution presented an activity of 0,6 Ci L-1. Small amounts of this solution were added to some electrolytes and tested in order to evaluate optimum electrolyte for deposition of 241Am. It was studied as electrolytes: HNO3 (0,2 mol L-1), NH4Cl (5,0 mol L-1) and a mixture of KCN and K2CO3 (in the rate of 2,0 g of each per liter). Yields of up to 90% were obtained applied a current density of 50 mA cm-2.