923 resultados para Complete nucleotide sequence


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A menudo los científicos secuencian el ADN de un gran número de personas con el objetivo de determinar qué genes se asocian con determinadas enfermedades. Esto permite meóon del genoma humano. El precio de un perfil genómico completo se ha posicionado por debajo de los 200 dólares y este servicio lo ofrecen muchas compañías, la mayor parte localizadas en EEUU. Como consecuencia, en unos pocos a~nos la mayoría de las personas procedentes de los países desarrollados tendrán los medios para tener su ADN secuenciado. Alrededor del 0.5% del ADN de cada persona (que corresponde a varios millones de nucleótidos) es diferente del genoma de referencia debido a variaciones genéticas. Así que el genoma contiene información altamente sensible y personal y representa la identidad biológica óon sobre el entorno o estilo de vida de uno (a menudo facilmente obtenible de las redes sociales), sería posible inferir el fenotipo del individuo. Multiples GWAS (Genome Wide Association Studies) realizados en los últimos a~nos muestran que la susceptibilidad de un paciente a tener una enfermedad en particular, como el Alzheimer, cáncer o esquizofrenia, puede ser predicha parcialmente a partir de conjuntos de sus SNP (Single Nucleotide Polimorphism). Estos resultados pueden ser usados para medicina genómica personalizada (facilitando los tratamientos preventivos y diagnósticos), tests de paternidad genéticos y tests de compatibilidad genética para averiguar a qué enfermedades pueden ser susceptibles los descendientes. Estos son algunos de los beneficios que podemos obtener usando la información genética, pero si esta información no es protegida puede ser usada para investigaciones criminales y por compañías aseguradoras. Este hecho podría llevar a discriminaci ón genética. Por lo que podemos concluir que la privacidad genómica es fundamental por el hecho de que contiene información sobre nuestra herencia étnica, nuestra predisposición a múltiples condiciones físicas y mentales, al igual que otras características fenotópicas, ancestros, hermanos y progenitores, pues los genomas de cualquier par de individuos relacionados son idénticos al 99.9%, contrastando con el 99.5% de dos personas aleatorias. La legislación actual no proporciona suficiente información técnica sobre como almacenar y procesar de forma segura los genomas digitalizados, por lo tanto, es necesaria una legislación mas restrictiva ---ABSTRACT---Scientists typically sequence DNA from large numbers of people in order to determine genes associated with particular diseases. This allows to improve the modern healthcare and to provide a better understanding of the human genome. The price of a complete genome profile has plummeted below $200 and this service is ofered by a number of companies, most of them located in the USA. Therefore, in a few years, most individuals in developed countries will have the means of having their genomes sequenced. Around 0.5% of each person's DNA (which corresponds to several millions of nucleotides) is diferent from the reference genome, owing to genetic variations. Thus, the genome contains highly personal and sensitive information, and it represents our ultimate biological identity. By combining genomic data with information about one's environment or lifestyle (often easily obtainable from social networks), could make it possible to infer the individual's phenotype. Multiple Genome Wide Association Studies (GWAS) performed in recent years have shown that a patient's susceptibility to particular diseases, such as Alzheimer's, cancer, or schizophrenia, can be partially predicted from sets of his SNPs. This results can be used for personalized genomic medicine (facilitating preventive treatment and diagnosis), genetic paternity tests, ancestry and genealogical testing, and genetic compatibility tests in order to have knowledge about which deseases would the descendant be susceptible to. These are some of the betefts we can obtain using genoma information, but if this information is not protected it can be used for criminal investigations and insurance purposes. Such issues could lead to genetic discrimination. So we can conclude that genomic privacy is fundamental due to the fact that genome contains information about our ethnic heritage, predisposition to numerous physical and mental health conditions, as well as other phenotypic traits, and ancestors, siblings, and progeny, since genomes of any two closely related individuals are 99.9% identical, in contrast with 99.5%, for two random people. The current legislation does not ofer suficient technical information about safe and secure ways of storing and processing digitized genomes, therefore, there is need for more restrictive legislation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Saccharomyces cerevisiae Sec7 protein (ySec7p), which is an important component of the yeast secretory pathway, contains a sequence of ≈200 amino acids referred to as a Sec7 domain. Similar Sec7 domain sequences have been recognized in several guanine nucleotide-exchange proteins (GEPs) for ADP ribosylation factors (ARFs). ARFs are ≈20-kDa GTPases that regulate intracellular vesicular membrane trafficking and activate phospholipase D. GEPs activate ARFs by catalyzing the replacement of bound GDP with GTP. We, therefore, undertook to determine whether a Sec7 domain itself could catalyze nucleotide exchange on ARF and found that it exhibited brefeldin A (BFA)-inhibitable ARF GEP activity. BFA is known to inhibit ARF GEP activity in Golgi membranes, thereby causing reversible apparent dissolution of the Golgi complex in many cells. The His6-tagged Sec7 domain from ySec7p (rySec7d) synthesized in Escherichia coli enhanced binding of guanosine 5′-[γ-[35S]thio]triphosphate by recombinant yeast ARF1 (ryARF1) and ryARF2 but not by ryARF3. The effects of rySec7d on ryARF2 were inhibited by BFA in a concentration-dependent manner but not by inactive analogues of BFA (B-17, B-27, and B-36). rySec7d also promoted BFA-sensitive guanosine 5′-[γ-thio]triphosphate binding by nonmyristoylated recombinant human ARF1 (rhARF1), rhARF5, and rhARF6, although the effect on rhARF6 was very small. These results are consistent with the conclusion that the yeast Sec7 domain itself contains the elements necessary for ARF GEP activity and its inhibition by BFA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cancer is a progressive multigenic disorder characterized by defined changes in the transformed phenotype that culminates in metastatic disease. Determining the molecular basis of progression should lead to new opportunities for improved diagnostic and therapeutic modalities. Through the use of subtraction hybridization, a gene associated with transformation progression in virus- and oncogene-transformed rat embryo cells, progression elevated gene-3 (PEG-3), has been cloned. PEG-3 shares significant nucleotide and amino acid sequence homology with the hamster growth arrest and DNA damage-inducible gene gadd34 and a homologous murine gene, MyD116, that is induced during induction of terminal differentiation by interleukin-6 in murine myeloid leukemia cells. PEG-3 expression is elevated in rodent cells displaying a progressed-transformed phenotype and in rodent cells transformed by various oncogenes, including Ha-ras, v-src, mutant type 5 adenovirus (Ad5), and human papilloma virus type 18. The PEG-3 gene is transcriptionally activated in rodent cells, as is gadd34 and MyD116, after treatment with DNA damaging agents, including methyl methanesulfonate and γ-irradiation. In contrast, only PEG-3 is transcriptionally active in rodent cells displaying a progressed phenotype. Although transfection of PEG-3 into normal and Ad5-transformed cells only marginally suppresses colony formation, stable overexpression of PEG-3 in Ad5-transformed rat embryo cells elicits the progression phenotype. These results indicate that PEG-3 is a new member of the gadd and MyD gene family with similar yet distinct properties and this gene may directly contribute to the transformation progression phenotype. Moreover, these studies support the hypothesis that constitutive expression of a DNA damage response may mediate cancer progression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cosmids from the 1A3–1A10 region of the complete miniset were individually subcloned by using the vector M13 mp18. Sequences of each cosmid were assembled from about 400 DNA fragments generated from the ends of these phage subclones and merged into one 189-kb contig. About 160 ORFs identified by the CodonUse program were subjected to similarity searches. The biological functions of 80 ORFs could be assigned reliably by using the WIT and Magpie genome investigation tools. Eighty percent of these recognizable ORFs were organized in functional clusters, which simplified assignment decisions and increased the strength of the predictions. A set of 26 genes for cobalamin biosynthesis, genes for polyhydroxyalkanoic acid metabolism, DNA replication and recombination, and DNA gyrase were among those identified. Most of the ORFs lacking significant similarity with reference databases also were grouped. There are two large clusters of these ORFs, one located between 45 and 67 kb of the map, and the other between 150 and 183 kb. Nine of the loosely identified ORFs (of 15) of the first of these clusters match ORFs from phages or transposons. The other cluster also has four ORFs of possible phage origin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Compound 1 (F), a nonpolar nucleoside analog that is isosteric with thymidine, has been proposed as a probe for the importance of hydrogen bonds in biological systems. Consistent with its lack of strong H-bond donors or acceptors, F is shown here by thermal denaturation studies to pair very poorly and with no significant selectivity among natural bases in DNA oligonucleotides. We report the synthesis of the 5′-triphosphate derivative of 1 and the study of its ability to be inserted into replicating DNA strands by the Klenow fragment (KF, exo− mutant) of Escherichia coli DNA polymerase I. We find that this nucleotide derivative (dFTP) is a surprisingly good substrate for KF; steady-state measurements indicate it is inserted into a template opposite adenine with efficiency (Vmax/Km) only 40-fold lower than dTTP. Moreover, it is inserted opposite A (relative to C, G, or T) with selectivity nearly as high as that observed for dTTP. Elongation of the strand past F in an F–A pair is associated with a brief pause, whereas that beyond A in the inverted A–F pair is not. Combined with data from studies with F in the template strand, the results show that KF can efficiently replicate a base pair (A–F/F–A) that is inherently very unstable, and the replication occurs with very high fidelity despite a lack of inherent base-pairing selectivity. The results suggest that hydrogen bonds may be less important in the fidelity of replication than commonly believed and that nucleotide/template shape complementarity may play a more important role than previously believed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

RNA templates of 33 nucleotides containing the brome mosaic virus (BMV) core subgenomic promoter were used to determine the promoter elements recognized by the BMV RNA-dependent RNA polymerase (RdRp) to initiate RNA synthesis. Nucleotides at positions −17, −14, −13, and −11 relative to the subgenomic initiation site must be maintained for interaction with the RdRp. Changes to every other nucleotide at these four positions allow predictions for the base-specific functional groups required for RdRp recognition. RdRp contact of the nucleotide at position −17 was suggested with a template competition assay. Comparison of the BMV subgenomic promoter to those from other plant and animal alphaviruses shows a remarkable degree of conservation of the nucleotides required for BMV subgenomic RNA synthesis. We show that the RdRp of the plant-infecting BMV is capable of accurately, albeit inefficiently, initiating RNA synthesis from the subgenomic promoter of the animal-infecting Semliki Forest virus. The sequence-specific recognition of RNA by the BMV RdRp is analogous to the recognition of DNA promoters by DNA-dependent RNA polymerases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Signal transduction pathways that mediate activation of serum response factor (SRF) by heterotrimeric G protein α subunits were characterized in transfection systems. Gαq, Gα12, and Gα13, but not Gαi, activate SRF through RhoA. When Gαq, α12, or α13 were coexpressed with a Rho-specific guanine nucleotide exchange factor GEF115, Gα13, but not Gαq or Gα12, showed synergistic activation of SRF with GEF115. The synergy between Gα13 and GEF115 depends on the N-terminal part of GEF115, and there was no synergistic effect between Gα13 and another Rho-specific exchange factor Lbc. In addition, the Dbl-homology (DH)-domain-deletion mutant of GEF115 inhibited Gα13- and Gα12-induced, but not GEF115 itself- or Gαq-induced, SRF activation. The DH-domain-deletion mutant also suppressed thrombin- and lysophosphatidic acid-induced SRF activation in NIH 3T3 cells, probably by inhibition of Gα12/13. The N-terminal part of GEF115 contains a sequence motif that is homologous to the regulator of G protein signaling (RGS) domain of RGS12. RGS12 can inhibit both Gα12 and Gα13. Thus, the inhibition of Gα12/13 by the DH-deletion mutant may be due to the RGS activity of the mutant. The synergism between Gα13 and GEF115 indicates that GEF115 mediates Gα13-induced activation of Rho and SRF.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A loxP-transposon retrofitting strategy for generating large nested deletions from one end of the insert DNA in bacterial artificial chromosomes and P1 artificial chromosomes was described recently [Chatterjee, P. K. & Coren, J. S. (1997) Nucleic Acids Res. 25, 2205–2212]. In this report, we combine this procedure with direct sequencing of nested-deletion templates by using primers located in the transposon end to illustrate its value for position-specific single-nucleotide polymorphism (SNP) discovery from chosen regions of large insert clones. A simple ampicillin sensitivity screen was developed to facilitate identification and recovery of deletion clones free of transduced transposon plasmid. This directed approach requires minimal DNA sequencing, and no in vitro subclone library generation; positionally oriented SNPs are a consequence of the method. The procedure is used to discover new SNPs as well as physically map those identified from random subcloned libraries or sequence databases. The deletion templates, positioned SNPs, and markers are also used to orient large insert clones into a contig. The deletion clone can serve as a ready resource for future functional genomic studies because each carries a mammalian cell-specific antibiotic resistance gene from the transposon. Furthermore, the technique should be especially applicable to the analysis of genomes for which a full genome sequence or radiation hybrid cell lines are unavailable.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite more than a century of debate, the evolutionary position of turtles (Testudines) relative to other amniotes (reptiles, birds, and mammals) remains uncertain. One of the major impediments to resolving this important evolutionary problem is the highly distinctive and enigmatic morphology of turtles that led to their traditional placement apart from diapsid reptiles as sole descendants of presumably primitive anapsid reptiles. To address this question, the complete (16,787-bp) mitochondrial genome sequence of the African side-necked turtle (Pelomedusa subrufa) was determined. This molecule contains several unusual features: a (TA)n microsatellite in the control region, the absence of an origin of replication for the light strand in the WANCY region of five tRNA genes, an unusually long noncoding region separating the ND5 and ND6 genes, an overlap between ATPase 6 and COIII genes, and the existence of extra nucleotides in ND3 and ND4L putative ORFs. Phylogenetic analyses of the complete mitochondrial genome sequences supported the placement of turtles as the sister group of an alligator and chicken (Archosauria) clade. This result clearly rejects the Haematothermia hypothesis (a sister-group relationship between mammals and birds), as well as rejecting the placement of turtles as the most basal living amniotes. Moreover, evidence from both complete mitochondrial rRNA genes supports a sister-group relationship of turtles to Archosauria to the exclusion of Lepidosauria (tuatara, snakes, and lizards). These results challenge the classic view of turtles as the only survivors of primary anapsid reptiles and imply that turtles might have secondarily lost their skull fenestration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe here a DNA polymerase family highly conserved in Euryarchaeota, a subdomain of Archaea. The DNA polymerase is composed of two proteins, DP1 and DP2. Sequence analysis showed that considerable similarity exists between DP1 and the second subunit of eukaryotic DNA polymerase δ, a protein essential for the propagation of Eukarya, and that DP2 has conserved motifs found in proteins with nucleotide-polymerizing activity. These results, together with our previous biochemical analyses of one of the members, DNA polymerase II (DP1 + DP2) from Pyrococcus furiosus, implicate the DNA polymerases of this family in the DNA replication process of Euryarchaeota. The discovery of this DNA-polymerase family, aside from providing an opportunity to enhance our knowledge of the evolution of DNA polymerases, is a significant step toward the complete understanding of DNA replication across the three domains of life.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Leishmania are parasites that survive within macrophages by mechanism(s) not entirely known. Depression of cellular immunity and diminished production of interleukin 1β (IL-1β) and tumor necrosis factor α are potential ways by which the parasite survives within macrophages. We examined the mechanism(s) by which lipophosphoglycan (LPG), a major glycolipid of Leishmania, perturbs cytokine gene expression. LPG treatment of THP-1 monocytes suppressed endotoxin induction of IL-1β steady-state mRNA by greater than 90%, while having no effect on the expression of a control gene. The addition of LPG 2 h before or 2 h after endotoxin challenge significantly suppressed steady-state IL-1β mRNA by 90% and 70%, respectively. LPG also inhibited tumor necrosis factor α and Staphylococcus induction of IL-1β gene expression. The inhibitory effect of LPG is agonist-specific because LPG did not suppress the induction of IL-1β mRNA by phorbol 12-myristate 13-acetate. A unique DNA sequence located within the −310 to −57 nucleotide region of the IL-1β promoter was found to mediate LPG’s inhibitory activity. The requirement for the −310 to −57 promoter gene sequence for LPG’s effect is demonstrated by the abrogation of LPG’s inhibitory activity by truncation or deletion of the −310 to −57 promoter gene sequence. Furthermore, the minimal IL-1β promoter (positions −310 to +15) mediated LPG’s inhibitory activity with dose and kinetic profiles that were similar to LPG’s suppression of steady-state IL-1β mRNA. These findings delineated a promoter gene sequence that responds to LPG to act as a “gene silencer,” a function, to our knowledge, not previously described. LPG’s inhibitory activity for several mediators of inflammation and the persistence of significant inhibitory activity 2 h after endotoxin challenge suggest that LPG has therapeutic potential and may be exploited for therapy of sepsis, acute respiratory distress syndrome, and autoimmune diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ocular cicatricial pemphigoid (OCP) is an autoimmune disease that affects mainly conjunctiva and other squamous epithelia. OCP is histologically characterized by a separation of the epithelium from underlying tissues within the basement membrane zone. Immunopathological studies demonstrate the deposition of anti-basement membrane zone autoantibodies in vivo. Purified IgG from sera of patients with active OCP identified a cDNA clone from a human keratinocyte cDNA library that had complete homology with the cytoplasmic domain of β4-integrin. The sera recognized a 205-kDa protein in human epidermal, human conjunctiva, and tumor cell lysates that was identified as β4-integrin by its reaction with polyclonal and monoclonal antibodies to human β4-integrin. Sera from patients with bullous pemphigoid, pemphigus vulgaris, and cicatricial pemphigoid-like diseases did not recognize the 205-kDa protein, indicating the specificity of the binding. These data strongly implicate a role for human β4-integrin in the pathogenesis of OCP. It should be emphasized that multiple antigens in the basement membrane zone of squamous epithelia may serve as targets for a wide spectrum of autoantibodies observed in vesiculobullous diseases. Molecular definition of these autoantigens will facilitate the classification and characterization of subsets of cicatricial pemphigoid and help distinguishing them from bullous pemphigoid. This study highlights the function and importance of β4-integrin in maintaining the attachment of epithelial cells to the basement membrane.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hepatitis B viruses (HBV) and related viruses, classified in the Hepadnaviridae family, are found in a wide variety of mammals and birds. Although the chimpanzee has been the primary experimental model of HBV infection, this species has not been considered a natural host for the virus. Retrospective analysis of 13 predominantly wild-caught chimpanzees with chronic HBV infection identified a unique chimpanzee HBV strain in 11 animals. Nucleotide and derived amino acid analysis of the complete HBV genome and the gene coding for the hepatitis B surface antigen (S gene) identified sequence patterns that could be used to reliably identify chimpanzee HBV. This analysis indicated that chimpanzee HBV is distinct from known human HBV genotypes and is closely related to HBVs previously isolated from a chimpanzee, gibbons, gorillas, and orangutans.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The nucleocapsid of hepatitis B virus (HBV), or HBcAg, is a highly symmetric structure formed by multiple dimers of a single core protein that contains potent T helper epitopes in its 183-aa sequence. Both factors make HBcAg an unusually strong immunogen and an attractive candidate as a carrier for foreign epitopes. The immunodominant c/e1 epitope on the capsid has been suggested as a superior location to convey high immunogenicity to a heterologous sequence. Because of its central position, however, any c/e1 insert disrupts the core protein’s primary sequence; hence, only peptides, or rather small protein fragments seemed to be compatible with particle formation. According to recent structural data, the epitope is located at the tips of prominent surface spikes formed by the very stable dimer interfaces. We therefore reasoned that much larger inserts might be tolerated, provided the individual parts of a corresponding fusion protein could fold independently. Using the green fluorescent protein (GFP) as a model insert, we show that the chimeric protein efficiently forms fluorescent particles; hence, all of its structurally important parts must be properly folded. We also demonstrate that the GFP domains are surface-exposed and that the chimeric particles elicit a potent humoral response against native GFP. Hence, proteins of at least up to 238 aa can be natively displayed on the surface of HBV core particles. Such chimeras may not only be useful as vaccines but may also open the way for high resolution structural analyses of nonassembling proteins by electron microscopy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ERCC1–XPF is a structure-specific nuclease with two subunits, ERCC1 and XPF. The enzyme cuts DNA at junctions where a single strand moves 5′ to 3′ away from a branch point with duplex DNA. This activity has a central role in nucleotide excision repair (NER), DNA cross-link repair and recombination. To dissect the activities of the nuclease it is necessary to investigate the subunits individually, as studies of the enzyme so far have only used the heterodimeric complex. We produced recombinant ERCC1 and XPF separately in Escherichia coli as soluble proteins. Activity was monitored by a sensitive dual incision assay for NER by complementation of cell extracts. XPF and ERCC1 are unstable in mammalian cells in the absence of their partners but we found, surprisingly, that ERCC1 alone could confer some repair to extracts from ERCC1-defective cells. A version of ERCC1 lacking the first 88 non-conserved amino acids was also functional. This indicated that a small amount of active XPF was present in ERCC1 extracts, and immunoassays showed this to be the case. Some repair in XPF-defective extracts could be achieved by adding ERCC1 and XPF proteins together, but not by adding only XPF. The results show for the first time that functional ERCC1–XPF can be formed from separately produced subunits. Protein sequence comparison revealed similarity between the ERCC1 family and the C-terminal region of the XPF family, including the regions of both proteins that are necessary for the ERCC1–XPF heterodimeric interaction. This suggests that the ERCC1 and XPF families are related via an ancient duplication.