824 resultados para lipopolysaccharide


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated the involvement of Tol proteins in the surface expression of lipopolysaccharide (LPS). tolQ, -R, -A and -B mutants of Escherichia coli K-12, which do not form a complete LPS-containing O antigen, were transformed with the O7+ cosmid pJHCV32. The tolA and tolQ mutants showed reduced O7 LPS expression compared with the respective isogenic parent strains. No changes in O7 LPS expression were found in the other tol mutants. The O7-deficient phenotype in the tolQ and tolA mutants was complemented with a plasmid encoding the tolQRA operon, but not with a similar plasmid containing a frameshift mutation inactivating tolA. Therefore, the reduction in O7 LPS was attributed to the lack of a functional tolA gene, caused either by a direct mutation of this gene or by a polar effect on tolA gene expression exerted by the tolQ mutation. Reduced surface expression of O7 LPS was not caused by changes in lipid A-core structure or downregulation of the O7 LPS promoter. However, an abnormal accumulation of radiolabelled mannose was detected in the plasma membrane. As mannose is a sugar unique to the O7 subunit, this result suggested the presence of accumulated O7 LPS biosynthesis intermediates. Attempts to construct a tolA mutant in the E. coli O7 wild-type strain VW187 were unsuccessful, suggesting that this mutation is lethal. In contrast, a polar tolQ mutation affecting tolA expression in VW187 caused slow growth rate and serum sensitivity in addition to reduced O7 LPS production. VW187 tolQ cells showed an elongated morphology and became permeable to the membrane-impermeable dye propidium iodide. All these phenotypes were corrected upon complementation with cloned tol genes but were not restored by complementation with the tolQRA operon containing the frameshift mutation in tolA. Our results demonstrate that the TolA protein plays a critical role in the surface expression of O antigen subunits by an as yet uncharacterized involvement in the processing of O antigen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The intermediate steps in the biosynthesis of the ADP-L-glycero-D-manno-heptose precursor of inner core lipopolysaccharide (LPS) are not yet elucidated. We isolated a mini-Tn10 insertion that confers a heptoseless LPS phenotype in the chromosome of Escherichia coli K-12. The mutation was in a gene homologous to the previously reported rfaE gene from Haemophilus influenzae. The E. coli rfaE gene was cloned into an expression vector, and an in vitro transcription-translation experiment revealed a polypeptide of approximately 55 kDa in mass. Comparisons of the predicted amino acid sequence with other proteins in the database showed the presence of two clearly separate domains. Domain I (amino acids 1 to 318) shared structural features with members of the ribokinase family, while Domain II (amino acids 344 to 477) had conserved features of the cytidylyltransferase superfamily that includes the aut gene product of Ralstonia eutrophus. Each domain was expressed individually, demonstrating that only Domain I could complement the rfaE::Tn10 mutation in E. coli, as well as the rfaE543 mutation of Salmonella enterica SL1102. DNA sequencing of the rfaE543 gene revealed that Domain I had one amino acid substitution and a 12-bp in-frame deletion resulting in the loss of four amino acids, while Domain II remained intact. We also demonstrated that the aut::Tn5 mutation in R. eutrophus is associated with heptoseless LPS, and this phenotype was restored following the introduction of a plasmid expressing the E. coli Domain II. Thus, both domains of rfaE are functionally different and genetically separable confirming that the encoded protein is bifunctional. We propose that Domain I is involved in the synthesis of D-glycero-D-manno-heptose 1-phosphate, whereas Domain II catalyzes the ADP transfer to form ADP-D-glycero-D-manno-heptose.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In previous studies the authors cloned and characterized the DNA sequence of the regions at both ends of the O7-specific lipopolysaccharide (LPS) biosynthesis cluster of Escherichia coli VW187 (O7:K1), and identified the biosynthetic genes for dTDP-rhamnose and GDP-mannose, as well as one of the candidate glycosyltransferases. In this work the complete DNA sequence of a 6.9 kb intervening region is presented. Seven new ORFs were identified. All the functions required for the synthesis and transfer of the O7 LPS were assigned on the basis of complementation experiments of transposon insertion mutants, and amino acid sequence homology to proteins involved in LPS synthesis of other bacteria. Of the seven ORFs, two encoded membrane proteins that were homologous to the O-antigen translocase (Wzx) and polymerase (Wxy), two were involved in the biosynthesis of dTDP-N-acetylviosamine, and the remaining three showed homologies to sugar transferases. The O antigen chain length regulator gene wzz was also identified in the vicinity of the O7 polysaccharide cluster. O7-specific DNA primers were designed and tested for serotyping of O7 E. coli strains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the identification of the promoter region of the Escherichia coli O7-specific lipopolysaccharide (LPS) gene cluster (wbEcO7). Typical -10 and -35 sequences were found to be located in the intervening region between galF and rlmB, the first gene of the wbEcO7 cluster. Data from RNase protection experiments revealed the existence of an untranslated leader mRNA segment of 173 bp, including the JUMPStart and two ops sequences. We characterized the structure of this leader mRNA by using the program Mfold and a combination of nested and internal deletions transcriptionally fused to a promoterless lac operon. Our results indicated that the leader mRNA may fold into a series of complex stem-loop structures, one of which includes the JUMPStart element. We have also found that one of the ops sequences resides on the predicted stem and the other resides on the loop region, and we confirmed that these sequences are essential for the RfaH-mediated regulation of the O polysaccharide cluster. A very similar stem-loop structure could be predicted in the promoter region of the LPS core operon encoding the waaQGPSBIJYZK genes. We observed another predicted stem-loop, located immediately downstream from the wbEcO7 transcription initiation site, which appeared to be involved in premature termination of transcription. This putative stem-loop is common to many other O polysaccharide gene clusters but is not present in core oligosaccharide genes. wbEcO7-lac transcriptional fusions in single copy numbers were also used to determine the effects of various environmental cues in the transcriptional regulation of O polysaccharide synthesis. No effects were detected with temperature, osmolarity, Mg2+ concentration, and drugs inducing changes in DNA supercoiling. We therefore conclude that the wbEcO7 promoter activity may be constitutive and that regulation takes place at the level of elongation of the mRNA in a RfaH-mediated manner.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The lpcA locus has been identified in Escherichia coli K12 novobiocin-supersensitive mutants that produce a short lipopolysaccharide (LPS) core which lacks glyceromannoheptose and terminal hexoses. We have characterized lpcA as a single gene mapping around 5.3 min (246 kilobases) on the E. coli K12 chromosome and encoding a 22.6-kDa cytosolic protein. Recombinant plasmids containing only lpcA restored a complete core LPS in the E. coli strain chi711. We show that this strain has an IS5-mediated chromosomal deletion of 35 kilobases that eliminates lpcA. The LpcA protein showed discrete similarities with a family of aldose/ketose isomerases and other proteins of unknown function. The isomerization of sedoheptulose 7-phosphate, into a phosphosugar presumed to be D-glycero-D-mannoheptose 7-phosphate, was detected in enzyme reactions with cell extracts of E. coli lpcA+ and of lpcA mutants containing the recombinant lpcA gene. We concluded that LpcA is the phosphoheptose isomerase used in the first step of glyceromannoheptose synthesis. We also demonstrated that lpcA is conserved among enteric bacteria, all of which contain glyceromannoheptose in the inner core LPS, indicating that LpcA is an essential component in a conserved biosynthetic pathway of inner core LPS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report that rfe mutants of wild-type strains of Escherichia coli O7, O18, O75, and O111 did not express O-specific polysaccharide unless the rfe mutation was complemented by a cloned rfe gene supplied in a plasmid. The O polysaccharides in these strains are known to have N-acetylglucosamine (GlcNAc) in their O repeats. In addition, in vitro transferase assays with bacterial membranes from either the O7 wild-type strain or its isogenic rfe mutant showed that GlcNAc is the first carbohydrate added onto the lipid acceptor in the assembly of the O7 repeat and that this function is inhibited by tunicamycin. Our results indicate that the rfe gene product is a general requirement for the synthesis of O polysaccharides containing GlcNAc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We recently reported a novel genetic locus located in the sbcB-his region of the chromosomal map of Escherichia coli K-12 which directs the expression of group 6-positive phenotype in Shigella flexneri lipopolysaccharide, presumably due to the transfer of O-acetyl groups onto rhamnose residues of the S. flexneri O-specific polysaccharide (Z. Yao, H. Liu, and M. A. Valvano, J. Bacteriol. 174:7500-7508, 1992). In this study, we identified the genetic region encoding group 6 specificity as part of the rfb gene cluster of E. coli K-12 strain W3110 and established the DNA sequence of most of this cluster. The rfbBDACX block of genes, located in the upstream region of the rfb cluster, was found to be strongly conserved in comparison with the corresponding region in Shigella dysenteriae type 1 and Salmonella enterica. Six other genes, four of which were shown to be essential for the expression of group 6 reactivity in S. flexneri serotypes Y and 4a, were identified downstream of rfbX. One of the remaining two genes showed similarities with rfc (O-antigen polymerase) of S. enterica serovar typhimurium, whereas the other, located in the downstream end of the cluster next to gnd (gluconate-6-phosphate dehydrogenase), had an IS5 insertion. Recently, it has been reported that the IS5 insertion mutation (rfb-50) can be complemented, resulting in the formation of O16-specific polysaccharide by E. coli K-12 (D. Liu and P. R. Reeves, Microbiology 140:49-57, 1994). We present immunochemical evidence suggesting that S. flexneri rfb genes also complement the rfb-50 mutation; in the presence of rfb genes of E. coli K-12, S. flexneri isolates express O16-specific polysaccharide which is also acetylated in its rhamnose residues, thereby eliciting group 6 specificity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The O-specific lipopolysaccharide side chains of Escherichia coli O7 and Shigella boydii type 12 possess similar but not identical chemical structures. We investigated the genetic relatedness between the O-specific side chain genes in members of these two species. Examination of outer membrane protein and lipopolysaccharide (LPS) banding patterns demonstrated that five strains which had been identified as S. boydii type 12 fell into two clonal groups, SB1 and SB2. Hybridizations with O7-specific radiolabeled probes derived from the chromosomal DNA of an E. coli O7 strain detected identical fragments among the three SB1 strains of S. boydii type 12 and the two E. coli O7 reference isolates. The two other S. boydii type 12 strains, which belonged to the SB2 clone, did not show homologies with the O7 probe under high-stringency conditions of hybridization. The homology between the O7 and type 12 LPS gene regions from the SB1 strains was further confirmed by the construction of O-specific side chain-deficient mutations in these strains by homologous recombination of a suicide plasmid containing O7-specific DNA sequences. Immunoblot experiments with O7 antiserum gave a weak cross-reaction with LPS purified from the SB2 strains but a very strong cross-reaction with the LPS from SB1 isolates. Antiserum raised to one of the SB2 strains cross-reacted only with S. boydii type 12 LPS from the SB1 clone but failed to react with O7 LPS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have cloned and studied the expression in Escherichia coli K-12 of chromosomal rfb genes determining the biosynthesis of the O7 lipopolysaccharide (LPS) antigen from E. coli K1 strain VW187. Two E. coli K-12 strains carrying recombinant cosmids gave positive coagglutination reactions with protein A-rich staphylococcal particles bearing an O7-specific rabbit polyclonal antiserum. Silver-stained polyacrylamide gels of total membranes extracted with hot phenol showed O side chain material which had O7 specificity as determined by immunoblotting experiments. However, the amount of O7 LPS expressed in E. coli K-12 was considerably lower than that produced by the wild-type strain VW187. Deletion and transposition experiments identified a region of about 17 kilobase pairs which is essential for the expression of O7 LPS. The existence of homologies between the O7 LPS genes and other E. coli O side chain genes was investigated by Southern blot hybridization experiments. An O7-specific probe fragment of 15 kilobase pairs did not hybridize to genomic DNA digests of E. coli strains belonging to several different O types, demonstrating that the O7 LPS genes are unique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A number of studies have investigated the effects of fish oil on the production of pro-inflammatory cytokines using peripheral blood mononuclear cell models. The majority of these studies have employed heterogeneous blends of long-chain n-3 polyunsaturated fatty acids (PUFA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), which preclude examination of the individual effects of LC n-3 PUFA. This study investigated the differential effects of pure EPA and DHA on cytokine expression and nuclear factor kappaB (NF-kappaB) activation in human THP-1 monocyte-derived macrophages. Pretreatment with 100 microM EPA and DHA significantly decreased lipopolysaccharide (LPS)-stimulated THP-1 macrophage tumor necrosis factor (TNF) alpha, interleukin (IL) 1beta and IL-6 production (P

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lipopolysaccharide-binding protein (LBP) and CD14 contribute to the recognition of pathogens by cells, which triggers the activation of defence responses. Smoking is a risk factor for the development of chronic obstructive pulmonary disease (COPD) and respiratory infections. The current authors theorised that levels of LBP and CD14 in the lungs of smokers would be higher than those in the lungs of never-smokers. These elevated levels could affect host responses upon infection. LBP, soluble CD14 (sCD14) and interleukin (IL)-8 were detected by ELISA. Nuclear factor (NF)- ?B, p38 and the inhibitor I?Ba were studied by immunoassays. Gene expression was assessed by RT-PCR. Bronchoalveolar lavage levels of LBP and CD14 were significantly higher in smokers and COPD patients than in never-smokers, whereas levels of both proteins were not significantly different between smokers and COPD patients. IL-6, IL-1ß5 and cigarette smoke condensate induced the expression of LBP and CD14 by airway epithelial cells. LBP and sCD14 inhibited the nontypeable Haemophilus influenzae (NTHi)-dependent secretion of IL-8 and the activation of NF-?B and p38 mitogen-activated protein kinase signalling pathways but they increased the internalisation of NTHi by airway epithelial cells. Thus, in the inflamed airways of smokers both proteins could contribute to inhibit bacteria-dependent cellular activation without compromising the internalisation of pathogens by airway cells. Copyright©ERS Journals Ltd 2009.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Innate immunity recognizes bacterial molecules bearing pathogen-associated molecular patterns to launch inflammatory responses leading to the activation of adaptive immunity. However, the lipopolysaccharide (LPS) of the gram-negative bacterium Brucella lacks a marked pathogen-associated molecular pattern, and it has been postulated that this delays the development of immunity, creating a gap that is critical for the bacterium to reach the intracellular replicative niche. We found that a B. abortus mutant in the wadC gene displayed a disrupted LPS core while keeping both the LPS O-polysaccharide and lipid A. In mice, the wadC mutant induced proinflammatory responses and was attenuated. In addition, it was sensitive to killing by non-immune serum and bactericidal peptides and did not multiply in dendritic cells being targeted to lysosomal compartments. In contrast to wild type B. abortus, the wadC mutant induced dendritic cell maturation and secretion of pro-inflammatory cytokines. All these properties were reproduced by the wadC mutant purified LPS in a TLR4-dependent manner. Moreover, the core-mutated LPS displayed an increased binding to MD-2, the TLR4 co-receptor leading to subsequent increase in intracellular signaling. Here we show that Brucella escapes recognition in early stages of infection by expressing a shield against recognition by innate immunity in its LPS core and identify a novel virulence mechanism in intracellular pathogenic gram-negative bacteria. These results also encourage for an improvement in the generation of novel bacterial vaccines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

fA1122 is a T7-related bacteriophage infecting most isolates of Yersinia pestis, the etiologic agent of plague, and used by the CDC in the identification of Y. pestis. fA1122 infects Y. pestis grown both at 20 °C and at 37 °C. Wild-type Yersinia pseudotuberculosis strains are also infected but only when grown at 37 °C. Since Y. pestis expresses rough lipopolysaccharide (LPS) missing the O-polysaccharide (O-PS) and expression of Y. pseudotuberculosis O-PS is largely suppressed at temperatures above 30 °C, it has been assumed that the phage receptor is rough LPS. We present here several lines of evidence to support this. First, a rough derivative of Y. pseudotuberculosis was also fA1122 sensitive when grown at 22 °C. Second, periodate treatment of bacteria, but not proteinase K treatment, inhibited the phage binding. Third, spontaneous fA1122 receptor mutants of Y. pestis and rough Y. pseudotuberculosis could not be isolated, indicating that the receptor was essential for bacterial growth under the applied experimental conditions. Fourth, heterologous expression of the Yersinia enterocolitica O:3 LPS outer core hexasaccharide in both Y. pestis and rough Y. pseudotuberculosis effectively blocked the phage adsorption. Fifth, a gradual truncation of the core oligosaccharide into the Hep/Glc (L-glycero-D-manno-heptose/D-glucopyranose)-Kdo/Ko (3-deoxy-D-manno-oct-2-ulopyranosonic acid/D-glycero-D-talo-oct-2-ulopyranosonic acid) region in a series of LPS mutants was accompanied by a decrease in phage adsorption, and finally, a waaA mutant expressing only lipid A, i.e., also missing the Kdo/Ko region, was fully fA1122 resistant. Our data thus conclusively demonstrated that the fA1122 receptor is the Hep/Glc-Kdo/Ko region of the LPS core, a common structure in Y. pestis and Y. pseudotuberculosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Yersinia enterocolitica (Ye) is a gram-negative bacterium; Ye serotype O:3 expresses lipopolysaccharide (LPS) with a hexasaccharide branch known as the outer core (OC). The OC is important for the resistance of the bacterium to cationic antimicrobial peptides and also functions as a receptor for bacteriophage phiR1-37 and enterocoliticin. The biosynthesis of the OC hexasaccharide is directed by the OC gene cluster that contains nine genes (wzx, wbcKLMNOPQ, and gne). In this study, we inactivated the six OC genes predicted to encode glycosyltransferases (GTase) one by one by nonpolar mutations to assign functions to their gene products. The mutants expressed no OC or truncated OC oligosaccharides of different lengths. The truncated OC oligosaccharides revealed that the minimum structural requirements for the interactions of OC with bacteriophage phiR1-37, enterocoliticin, and OC-specific monoclonal antibody 2B5 were different. Furthermore, using chemical and structural analyses of the mutant LPSs, we could assign specific functions to all six GTases and also revealed the exact order in which the transferases build the hexasaccharide. Comparative modeling of the catalytic sites of glucosyltransferases WbcK and WbcL followed by site-directed mutagenesis allowed us to identify Asp-182 and Glu-181, respectively, as catalytic base residues of these two GTases. In general, conclusive evidence for specific GTase functions have been rare due to difficulties in accessibility of the appropriate donors and acceptors; however, in this work we were able to utilize the structural analysis of LPS to get direct experimental evidence for five different GTase specificities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show that the expression of a Yersinia enterocolitica O:8 pYV-encoded type III secretion system was altered in a rough mutant (YeO8-R) due to elevated levels of FlhDC. H-NS might underlie flhDC upregulation in YeO8-R, and the data suggest a relationship between the absence of O antigen and the expression of H-NS.