944 resultados para leaf area


Relevância:

70.00% 70.00%

Publicador:

Resumo:

O desenvolvimento das cultivares de guandu IAC-Fava Larga (C1), ICP-7035 (C3) e daiinhagem IAC-87318 (C2) foi estudado em três idades, aos 14,28 e 42 dias após a semeadura, em casa de vegetação. Foram avaliados os seguintes parâmetros: altura (cm), número de folhas, área foliar (dm²), densidade de raízes (cm de raiz/cm³ de substrato) e massa seca (g) de caules, lâminas foliares e raízes. O experimento foi conduzido em delineamento inteiramente casualizado, com três repetições. As médias das medidas de crescimento das cultivares foram comparadas entre si, pelo teste de Tukey, em cada idade, tendo a cultivar C2 apresentado maior crescimento do sistema radicular e da parte aérea, aos 14, 28 e 42 dias. As cultivares C3 e C1, apresentaram plântulas menos vigorosas e com menor quantidade de raízes. Os sistemas radiculares de C1, C2 e C3 alcançaram cerca de 60cm de profundidade, aos 14 dias, e os de C2 e C3 no final do experimento, aos 42 dias, quando atingiram 100cm.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In the present study, we examined how residues of nitrogen (N), phosphorus (P) and calcium (Ca) fertilisers affect leaf anatomical traits in Maprounea brasiliensis (Euphorbiaceae), a typical and dominant cerrado (Brazilian savannah) species adapted to dystrophic soils. We predicted that fertiliser residues would alter qualitative and quantitative aspects of M. brasiliensis leaves and would decrease their scleromorphy. Leaves were sampled from plants that were growing in soils previously fertilised with N, P and Ca and in plants that were growing in soils without fertiliser residues. We measured the thickness of the cuticle, the epidermis of adaxial and abaxial surfaces, thickness of palisade parenchyma and spongy parenchyma, total thickness of the leaf, total area of the midrib and leaf mass per area (LMA). We found that plants under fertiliser residues produced fewer scleromorphic leaves with low LMA, thinner cuticle and epidermis and thicker palisade and spongy parenchyma. They also showed a decrease in the size and area occupied by the leaf midvein. However, plants under fertiliser residues produced similar leaf thickness as did the plants in the control group. Our results showed that residual effects of fertilisation changed structural patterns of a typical species of cerrado. Thus, further studies about fertilisation effects on leaf traits are needed because larger areas of the central cerrado are being occupied for agricultural production. © 2013 CSIRO.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The ecology of forest and savanna trees species will largely determine the structure and dynamics of the forest-savanna boundaries, but little is known about the constraints to leaf trait variation imposed by selective forces and evolutionary history during the process of savanna invasion by forest species. We compared seasonal patterns in leaf traits related to leaf structure, carbon assimilation, water, and nutrient relations in 10 congeneric species pairs, each containing one savanna species and one forest species. All individuals were growing in dystrophic oxisols in a fire-protected savanna of Central Brazil. We tested the hypothesis that forest species would be more constrained by seasonal drought and nutrient-poor soils than their savanna congeners. We also hypothesized that habitat, rather than phylogeny, would explain more of the interspecific variance in leaf traits of the studied species. We found that throughout the year forest trees had higher specific leaf area (SLA) but lower integrated water use efficiency than savanna trees. Forest and savanna species maintained similar values of predawn and midday leaf water potential along the year. Lower values were measured in the dry season. However, this was achieved by a stronger regulation of stomatal conductance and of CO2 assimilation on an area basis (A area) in forest trees, particularly toward the end of the dry season. Relative to savanna trees, forest trees maintained similar (P, K, Ca, and Mg) or slightly higher (N) leaf nutrient concentrations. For the majority of traits, more variance was explained by phylogeny, than by habitat of origin, with the exception of SLA, leaf N concentration, and A area, which were apparently subjected to different selective pressures in the savanna and forest environments. In conclusion, water shortage during extended droughts would be more limiting for forest trees than nutrient-poor soils. © 2013 Springer-Verlag Berlin Heidelberg.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This study compared the morphological and anatomical variations of the leaves of four shade-tolerant tree species Allophylus edulis (St.-Hil.) Radlk (Sapindaceae), Casearia sylvestris Sw. (Salicaceae), Cupania vernalis Cambess. (Sapindaceae) and Luehea divaricata Mart. (Malvaceae) from a fragment of Araucaria forest in two developmental stages. Morphological and anatomical traits, such as leaf and tissue thickness, leaf area, leaf dry mass, specific leaf area, leaf density and stomata density were measured from 30 leaves of each developmental stage. The phenotypic plasticity index was also calculated for each quantitative trait. The results showed that the four species presented higher mean values ​​for specific leaf area and spongy/palisade parenchyma ratio at young stage, and higher mean values ​​for stomata density, total and palisade parenchyma thickness in the adult stage. The plasticity index demonstrated that L. divricata presented highest plasticity for both the morphological and anatomical traits while A. edulis displayed the lowest plasticity index. The results of this study indicated that the leaves of these species exhibited distinct morphological traits at each stage of development to cope with acting environmental factors.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Soil that has a high degree of weathering, with more inorganic P bound to Fe and Al oxides, has less P availability to plants. Thus, the critical element of a plant refers to the level below which the growth rate and plant production decreases, demonstrating the need for supplementary fertilization. Accordingly, an experiment was conducted in a greenhouse at Embrapa Algodao with the objective of evaluating the response of castor plants to five doses of P in four types of soil with different adsorption characteristics and critical levels of foliar P. The experimental design was completely randomized in a 4 x 5 factorial design, four types of soil and 5 levels of P with four replications. For TCo, there was an increase in height growth, with dose of 229.6 mg dm(-3) responsible for maximum plant height (74.3 cm). The largest diameter stem (17.58 mm) was observed in CXve with an application of 229.6 mg dm(-3) of P; a decrease was seen when using higher doses. The increase in leaf area was smaller in RY (4724.8 cm(2)), where it was obtained with a dose of 280.2 mg dm(-3). In general, critical levels of P in the plant shoots did not vary much between the soils. The critical level of P in castor bean shoot dry mass was higher (4.61 g kg(-1)) in TCo, this result being directly related to the low clay content of the soil.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Understanding plant trait responses to elevated temperatures in the Arctic is critical in light of recent and continuing climate change, especially because these traits act as key mechanisms in climate-vegetation feedbacks. Since 1992, we have artificially warmed three plant communities at Alexandra Fiord, Nunavut, Canada (79°N). In each of the communities, we used open-top chambers (OTCs) to passively warm vegetation by 1-2 °C. In the summer of 2008, we investigated the intraspecific trait responses of five key species to 16 years of continuous warming. We examined eight traits that quantify different aspects of plant performance: leaf size, specific leaf area (SLA), leaf dry matter content (LDMC), plant height, leaf carbon concentration, leaf nitrogen concentration, leaf carbon isotope discrimination (LCID), and leaf d15N. Long-term artificial warming affected five traits, including at least one trait in every species studied. The evergreen shrub Cassiope tetragona responded most frequently (increased leaf size and plant height/decreased SLA, leaf carbon concentration, and LCID), followed by the deciduous shrub Salix arctica (increased leaf size and plant height/decreased SLA) and the evergreen shrub Dryas integrifolia (increased leaf size and plant height/decreased LCID), the forb Oxyria digyna (increased leaf size and plant height), and the sedge Eriophorum angustifolium spp. triste (decreased leaf carbon concentration). Warming did not affect d15N, leaf nitrogen concentration, or LDMC. Overall, growth traits were more sensitive to warming than leaf chemistry traits. Notably, we found that responses to warming were sustained, even after many years of treatment. Our work suggests that tundra plants in the High Arctic will show a multifaceted response to warming, often including taller shoots with larger leaves.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Physiognomic traits of plant leaves such as size, shape or margin are decisively affected by the prevailing environmental conditions of the plant habitat. On the other hand, if a relationship between environment and leaf physiognomy can be shown to exist, vegetation represents a proxy for environmental conditions. This study investigates the relationship between physiognomic traits of leaves from European hardwood vegetation and environmental parameters in order to create a calibration dataset based on high resolution grid cell data. The leaf data are obtained from synthetic chorologic floras, the environmental data comprise climatic and ecologic data. The high resolution of the data allows for a detailed analysis of the spatial dependencies between the investigated parameters. The comparison of environmental parameters and leaf physiognomic characters reveals a clear correlation between temperature related parameters (e.g. mean annual temperature or ground frost frequency) and the expression of leaf characters (e.g. the type of leaf margin or the base of the lamina). Precipitation related parameters (e.g. mean annual precipitation), however, show no correlation with the leaf physiognomic composition of the vegetation. On the basis of these results, transfer functions for several environmental parameters are calculated from the leaf physiognomic composition of the extant vegetation. In a next step, a cluster analysis is applied to the dataset in order to identify "leaf physiognomic communities". Several of these are distinguished, characterised and subsequently used for vegetation classification. Concerning the leaf physiognomic diversity there are precise differences between each of these "leaf physiognomic classes". There is a clear increase of leaf physiognomic diversity with increasing variability of the environmental parameters: Northern vegetation types are characterised by a more or less homogeneous leaf physiognomic composition whereas southern vegetation types like the Mediterranean vegetation show a considerable higher leaf physiognomic diversity. Finally, the transfer functions are used to estimate palaeo-environmental parameters of three fossil European leaf assemblages from Late Oligocene and Middle Miocene. The results are compared with results obtained from other palaeo-environmental reconstructing methods. The estimates based on a direct linear ordination seem to be the most realistic ones, as they are highly consistent with the Coexistence Approach.